
1 Basic Math
1.1 Norm

1. ℓ𝑝 -norm : ∥𝑥 ∥𝑝 =

(∑𝑛
𝑖=1 |𝑥𝑖 |𝑝

)1/𝑝
, ∥𝑥 ∥∞ = max1≤𝑖≤𝑛 |𝑥1 | .

2. dual norm for ∥ · ∥ is ∥𝑥 ∥∗ = max∥𝑦∥≤1 𝑦
⊤𝑥.

3. The dual norm for ℓ𝑝 is ℓ𝑞 where 1/𝑝 + 1/𝑞 = 1.

1.2 Inequalities
1. Cauchy–Schwarz Inequality: | ⟨u, v⟩ | ≤ ∥u∥ · ∥v∥(∫ 𝑏

𝑎
| 𝑓 (𝑥 )𝑔 (𝑥 ) | 𝑑𝑥

)2
≤

(∫ 𝑏
𝑎

| 𝑓 (𝑥 ) |2 𝑑𝑥
) (∫ 𝑏

𝑎
|𝑔 (𝑥 ) |2 𝑑𝑥

)
2. Holder Inequality:

∫ 𝑏
𝑎

| 𝑓 (𝑥 )𝑔 (𝑥 ) | 𝑑𝑥 ≤ ∥ 𝑓 ∥𝑝 · ∥𝑔∥𝑞 for 1/𝑝 +
1/𝑞 = 1.

3. Markov’s Inequality: P(𝑋 ≥ 𝑎) ≤ E[𝑋]
𝑎 for 𝑎 > 0.

4. Chernoff Inequality: P(𝑋 ≥ 𝑎) ≤ inf
𝑡>0

𝑀 (𝑡 )𝑒−𝑡𝑎 for 𝑎 > 0.

1.3 Matrix
1. Orthogonal matrices: A square matrix 𝑄 is orthogonal if 𝑄⊤𝑄 =
𝑄𝑄⊤ = 𝐼 .
• det𝑄 = ±1
• Its eigenvalues are placed on the unit circle. (so if real, 𝜆 = ±1)
• Its eigenvectors are unitary, i.e. have length one.
• Its columns as well as rows form an unit orthonormal set. (Thus, the

elements of𝑄 are no larger than 1 in absolute value.)
• Norm and inner-product preservation

2. Symmetric matrices: A square matrix 𝐴 is symmetric if 𝐴 = 𝐴⊤ .
• The eigenvalues of a real symmetric matrix are all real, and their

associated eigenvectors are orthogonal to each other.
• 𝜎𝑖 (𝐴) =

√︁
𝜆𝑖 (𝐴) = |𝜆𝑖 (𝐴) | . ∥𝐴∥2 = max

𝑖
|𝜆𝑖 (𝐴) |

3. Schur complement: Let 𝐴 =

[
𝑋 𝑌

𝑌⊤ 𝑍

]
be an 𝑛 × 𝑛 real symmetric

matrix.
• Suppose 𝑍 is invertible and define 𝑆𝐴 = 𝑋 −𝑌𝑍−1𝑌⊤ . If 𝑍 ∈≻ 0,

then 𝐴 ⪰ 0 iff 𝑋 ⪰ 0 and 𝑆𝐴 ⪰ 0.
• Suppose 𝑋 is invertible and define 𝑆′

𝐴
= 𝑍 −𝑌⊤𝑋−1𝑌 . If 𝑋 ∈≻ 0,

then 𝐴 ⪰ 0 iff 𝑍 ⪰ 0 and 𝑆′
𝐴

⪰ 0.
4. Positive Semidefinite Matrix: 𝐴 ⪰ 0 iff ∀𝑥 ∈ R𝑛 , 𝑥⊤𝐴𝑥 ≥ 0 iff

all eigenvalues are non-negative iff there exists a unique 𝑛 × 𝑛 positive
semidefinite matrix 𝐴1/2 such that 𝐴 = 𝐴1/2𝐴1/2 iff ∃𝐵 ∈ R𝑘×𝑛
(𝑘 = 𝑟𝑎𝑛𝑘 (𝐴)) such that 𝐴 = 𝐵⊤𝐵

5. Courant–Fischer theorem The 𝑘-th largest eigenvalue of a symmetric
matrix 𝐴 is given by

𝜆𝑘 = min
𝑤1 ,...,𝑤𝑘−1∈R𝑛

max
𝑥⊥𝑤1 ,...,𝑤𝑘−1

𝑥𝑇 𝐴𝑥

𝑥𝑇 𝑥

= max
𝑤1 ,...,𝑤𝑛−𝑘 ∈R𝑛

min
𝑥⊥𝑤1 ,...,𝑤𝑛−𝑘

𝑥𝑇 𝐴𝑥

𝑥𝑇 𝑥
.

1.3.1 Matrix Decomposition
1. SVD: For 𝐴 ∈ R𝑚×𝑛 , there 𝐴 =𝑈Λ𝑉⊤ =

∑𝑟
𝑖=1 𝜎

𝑖𝑢𝑖 (𝑣𝑖 )⊤ , where
Λ1 ≥ Λ2 ≥ ... > Λ𝑟+1 = ... = Λ𝑞 = 0, 𝑞 = min{𝑚, 𝑛}.
• 𝜎𝑖 (𝐴) =

√︁
𝜆𝑖 (𝐴⊤𝐴)

• 𝑈 ∈ R𝑚×𝑚 eigenvectors of 𝐴𝐴⊤
• 𝑉 ∈ R𝑛×𝑛 eigenvectors of 𝐴⊤𝐴

2. Decomposition of Symmetric Matrices Suppose 𝑄 is symmetric, then
𝑄 =𝑈Λ𝑈⊤ , where𝑈 is orthogonal and Λ is diagonal. The eigenvalues
of 𝑄 are the diagonal elements of Λ. The eigenvectors of 𝑄 are the
columns of𝑈.

3. QR decomposition: For a real square matrix 𝐴, there exits an orthogonal
𝑄 and an upper triangular 𝑅 such that 𝐴 = 𝑄𝑅. If A is nonsingular, then
this factorization is unique.

4. Cholesky-decomposition Assume 𝐴 is a symmetric positive square ma-
trix, then 𝐴 = 𝑈⊤𝑈 = 𝑈𝑈⊤ where 𝑈 is a unique upper triangular
matrix and 𝐿 is a lower triangular matrix.

1.3.2 Matrix Norms

1. Frobenius norm: ∥𝐴∥𝐹 =
√︃∑𝑚

𝑖=1
∑𝑛
𝑗=1 |𝑎𝑖 𝑗 |2 =

√︁
tr(𝐴⊤𝐴) =√︃∑𝑟

𝑖=1 𝜎
2
𝑖

.
2. Spectral norm: ∥𝐴∥2 = max∥𝑥∥2=1 ∥𝐴𝑥 ∥2 = 𝜎1 (𝐴) .
3. 1-norm: ∥𝐴∥1 = max1≤ 𝑗≤𝑛

∑𝑚
𝑖=1 |𝑎𝑖 𝑗 | = max∥𝑥∥1=1 ∥𝐴𝑥 ∥∞ .

4. Operator norm: ∥𝐴∥𝑝 = max∥𝑥∥𝑝=1 ∥𝐴𝑥 ∥𝑝 .
5. Infinity norm: ∥𝐴∥∞ = max1≤𝑖≤𝑚

∑𝑛
𝑗=1 |𝑎𝑖 𝑗 | =

max∥𝑥∥∞=1 ∥𝐴𝑥 ∥1 .
6. Nuclear norm: ∥𝐴∥∗ =

∑𝑟
𝑖=1 𝜎𝑖 (𝐴) =

∑𝑛
𝑖=1 𝜎𝑖 (𝐴

⊤ ) .
7. Induced norm: ∥𝐴∥𝑝→𝑞 = max∥𝑥∥𝑝=1 ∥𝐴𝑥 ∥𝑞 .

1.3.3 Derivatives of Matrices, Vectors
1. 𝑑

𝑑𝑋
tr 𝐴𝑋 = 𝐴𝑇 , 𝑑

𝑑𝐴
tr 𝐴𝑋 = 𝑋𝑇

2. 𝑑
𝑑𝑥
𝑥⊤𝑎 = 𝑑

𝑑𝑥
𝑎⊤𝑥 = 𝑎

3. 𝑑
𝑑𝑥
𝑥⊤𝐴𝑥 = (𝐴 + 𝐴⊤ )𝑥

4. 𝑑
𝑑𝑋

𝑎⊤𝑋⊤𝑏 = 1
2 (𝑏𝑎⊤ + 𝑎𝑏⊤ ) when 𝑋 ∈ S𝑛

5. 𝑑
𝑑𝑋

𝑎⊤𝑋𝑏 = 𝑎𝑏⊤ , 𝑑
𝑑𝑋

𝑎⊤𝑋⊤𝑏 = 𝑏𝑎⊤

6. 𝑑
𝑑𝑋

𝑏⊤𝑋⊤𝑋𝑐 = 𝑋 (𝑏𝑐⊤ + 𝑐𝑏⊤ )
7. 𝑑

𝑑𝑋
tr [𝐹 (𝑋) ] = 𝑓 (𝑋)⊤ where 𝑓 = 𝐹′

8. 𝑑
𝑑𝑋

log det𝑋 = (𝑋−1 )⊤

9. 𝑑
𝑑𝑋

det𝑋 = det𝑋 · (𝑋−1 )⊤

10. 𝑑 (𝐴−1 ) = −𝐴−1𝑑𝐴𝐴−1

11. 𝑑
𝑑𝑋

∑
𝑒𝑖𝑔 (𝑋) = 𝑑

𝑑𝑋
tr𝑋 = 𝐼

12. 𝑑
𝑑𝑋

∏
𝑒𝑖𝑔 (𝑋) = 𝑑

𝑑𝑋
det(𝑋) = 𝑑𝑒𝑡 (𝑋)𝑋−⊤

13. Norm Derivatives:
• 𝜕
𝜕𝑥

∥𝑥 − 𝑎∥2 = 𝑥−𝑎
∥𝑥−𝑎∥2

• 𝜕
𝜕𝑥

(
𝑥−𝑎

∥𝑥−𝑎∥2

)
= 𝐼

∥𝑥−𝑎∥2
− (𝑥−𝑎) (𝑥−𝑎)𝑇

∥𝑥−𝑎∥3
2

• 𝜕
𝜕𝑥

∥𝑥 ∥2
2 = 𝜕

𝜕𝑥
(𝑥𝑇 𝑥 ) = 2𝑥

• Frobenius norm: 𝜕
𝜕𝑋

∥𝑋∥2
𝐹

= 𝜕
𝜕𝑋

Tr(𝑋𝑋𝐻 ) = 2𝑋

1.4 Reasoning about Unboundedness for Quadratic Forms
(Duality)

• inf𝑥 𝑥𝑇𝑄𝑥 is unbounded below ⇐⇒ 𝑄 is not positive semidefinite
(𝑄 ⪰̸ 0)

• sup𝑥 𝑥𝑇𝑄𝑥 is unbounded above ⇐⇒ 𝑄 is not negative semidefinite

(𝑄 ⪯̸ 0)
• inf𝑥 1

2 𝑥
𝑇𝑄𝑥 + 𝑐𝑇 𝑥 is unbounded below ⇐⇒ 𝑄 ⪰̸ 0 or𝑄 ⪰ 0 and

𝑐 ∉ range(𝑄)
• sup𝑥 ; − 1

2 𝑥
𝑇𝑄𝑥 + 𝑐𝑇 𝑥 is unbounded above ⇐⇒ 𝑄 ⪯̸ 0 or 𝑄 ⪯ 0

and 𝑐 ∉ range(𝑄)
• If 𝑄 ≻ 0 (positive definite), then inf𝑥 1

2 𝑥
𝑇𝑄𝑥 + 𝑐𝑇 𝑥 is finite and

achieved at 𝑥∗ = −𝑄−1𝑐
• If 𝑄 ⪰ 0 (positive semidefinite) and 𝑐 ∈ range(𝑄) , inf𝑥 1

2 𝑥
𝑇𝑄𝑥 +

𝑐𝑇 𝑥 is finite and achieved at 𝑥∗ solving𝑄𝑥∗ + 𝑐 = 0
• If 𝑄 is indefinite (has both positive and negative eigenvalues), 𝑥𝑇𝑄𝑥 is

unbounded both above and below
• inf𝑥≥0 𝑥

𝑇𝑄𝑥 is unbounded below if ∃𝑑 ≥ 0, 𝑑 ≠ 0 such that
𝑑𝑇𝑄𝑑 < 0

• For𝑄 ≻ 0, sup𝑥 − 1
2 𝑥
𝑇𝑄𝑥+𝑐𝑇 𝑥 is finite and achieved at 𝑥∗ = 𝑄−1𝑐

• For𝑄 ≺ 0, sup𝑥 1
2 𝑥
𝑇𝑄𝑥+𝑐𝑇 𝑥 is finite and achieved at 𝑥∗ = −𝑄−1𝑐

1.5 Miscellaneous
1. Optimization facts: if min. (max) problem infeasible, define optimal

value as ∞(−∞)
2. Decomposition of any vector:

• Orthogonal decomposition of any vector 𝑐 w.r.t 𝐴𝑥 = 𝑏: 𝑐 =
𝐴⊤𝜆 + 𝑐0 , 𝐴

⊤𝑐0 = 0
• Parallel-orthogonal decomposition of any vector 𝑐 w.r.t vector 𝑎:
𝑐 = 𝜆𝑎 + 𝑐0 , 𝑎

⊤𝑐0 = 0
• 𝑥 = 𝑥+ + 𝑥− , 𝑥+ = max(0, 𝑥𝑖 ) , 𝑥− = max(0, −𝑥𝑖 )

3. Invertible Matrix:
• 𝐴𝐴−1 = 𝐴−1𝐴 = 𝐼𝑛 (unique inverse exists)
• det(𝐴) ≠ 0 (nonzero determinant)
• Columns and rows are linearly independent
• Full rank: rank(𝐴) = 𝑛
• The only solution to 𝐴x = 0 is x = 0
• For any b, the equation 𝐴x = b has a unique solution
• 𝐼 + 𝑦𝑦𝑇 − 𝑠𝑠𝑇 /𝑠𝑇 𝑠 is invertible if and only if 𝑦⊤𝑠 ≠ 0
• 𝑑𝑒𝑡 (𝐼 + 𝑦𝑦⊤ ) = 1 + 𝑦⊤𝑦
• 𝑑𝑒𝑡 (𝐴 − 𝑢𝑣⊤ ) = 𝑑𝑒𝑡 (𝐴) (1 − 𝑣⊤𝐴−1𝑢)
• (𝐼 + 𝑦𝑦⊤ )−1 = 𝐼 − (𝑦𝑦⊤ )/(1 + 𝑦⊤𝑦)
• 𝑒𝑖𝑔 (𝐴 − 𝜆𝐼 ) = 𝑒𝑖𝑔 (𝐴) − 𝜆
•

∑
𝑖 𝑣𝑖 𝑥

2
𝑖
= 𝑥𝑇𝑑𝑖𝑎𝑔 (𝑣)𝑥

4. Symmetric Matrix:
• 𝐴 = 𝐴⊤
• All eigenvalues of 𝐴 are real
• Eigenvectors corresponding to distinct eigenvalues are orthogonal
• Spectral Theorem: 𝐴 can be diagonalized by an orthogonal matrix:
𝐴 = 𝑄Λ𝑄⊤ , where𝑄 is orthogonal (𝑄⊤𝑄 = 𝐼), and Λ is diagonal
with real entries (the eigenvalues of 𝐴)

• 𝐴 has an orthonormal basis of eigenvectors
• The singular values of 𝐴 are |𝜆𝑖 (𝐴) | (the absolute values of its eigen-

values)
• 𝑥𝑥⊤ is always psd

5. Determinant Properties:
• det(𝑆) > 0 if S is pd
• det(𝐴) = ∏

𝑖 𝜆𝑖 , where 𝜆𝑖 = eig(𝐴)
• det(𝑐𝐴) = 𝑐𝑛 det(𝐴) , 𝐴 ∈ R𝑛×𝑛

• det(𝐴𝑇 ) = det(𝐴)
• det(𝐴𝐵) = det(𝐴) det(𝐵)
• det(𝐴−1 ) = 1

det(𝐴)
• det(𝐴𝑛 ) = [det(𝐴) ]𝑛
• det(𝐼 + 𝑢𝑣𝑇 ) = 1 + 𝑢𝑇 𝑣
• For 𝑛 = 2: det(𝐼 + 𝐴) = 1 + det(𝐴) + Tr(𝐴)
• For 𝑛 = 3: det(𝐼+𝐴) = 1+det(𝐴)+Tr(𝐴)+ 1

2 [Tr(𝐴)2−Tr(𝐴2 ) ]
6. Range and Null Space:

• Range: 𝑅 (𝐴) = {𝐴x : x ∈ R𝑛 }
• Null space: 𝑁 (𝐴) = {x : 𝐴x = 0}
• Orthogonality: 𝑅 (𝐴)⊥ = 𝑁 (𝐴⊤ ) , 𝑁 (𝐴) = (𝑅 (𝐴⊤ ) )⊥

7. Symmetric Matrix:
• If 𝐴 is symmetric, then 𝜎𝑖 (𝐴) = |𝜆𝑖 (𝐴) | , where 𝜆𝑖 (𝐴) is the 𝑖-th

largest eigenvalue.
• 𝑥𝑥⊤ is always psd

8. Vector Taylor Expansion: 𝑓 (y) ≈ 𝑓 (x) + ∇ 𝑓 (x)⊤ (y − x) + 1
2 (y −

x)⊤∇2 𝑓 (x) (y − x)
9. Integral Form of Taylor’s Theorem:

• 𝑓 (𝑦) = 𝑓 (𝑥 ) +
∫ 1
0 ∇ 𝑓 (𝑥 + 𝑡 (𝑦 − 𝑥 ) )⊤ (𝑦 − 𝑥 ) 𝑑𝑡

10. Matrix Rank:
• rank(𝐴) = rank(𝐴⊤ ) = rank(𝐴𝐴⊤ ) = rank(𝐴⊤𝐴)

11. Matrix Inequality:
• 𝑃 ⪰ 𝑄 ⇐⇒ 𝐼 ⪰ 𝑃−1/2𝑄𝑃−1/2

12. Taylor Series Expansions:
• 𝑒𝑥 =

∑∞
𝑛=0

𝑥𝑛

𝑛!
• log(1 + 𝑥 ) = ∑∞

𝑛=1 (−1)𝑛−1 𝑥𝑛
𝑛

13. Logarithm Bounds:
•

𝑥

1 + 𝑥 ≤ log(1 + 𝑥 ) ≤ 𝑥 for all 𝑥 > −1
14. Fundamental Theorem of Calculus:

• If 𝑓 is continuous on [𝑎, 𝑏] and 𝐹 (𝑥 ) =
∫ 𝑥
𝑎
𝑓 (𝑡 )𝑑𝑡 , then

𝐹′ (𝑥 ) = 𝑓 (𝑥 ) .
• If 𝐹 is an antiderivative of 𝑓 on [𝑎, 𝑏], then

∫ 𝑏
𝑎
𝑓 (𝑥 ) 𝑑𝑥 =

𝐹 (𝑏) − 𝐹 (𝑎) .
15. Basic Integrals:

•
∫
𝑥𝑛𝑑𝑥 = 𝑥𝑛+1

𝑛+1 +𝐶 , 𝑛 ≠ −1
•

∫ 1
𝑥 𝑑𝑥 = ln |𝑥 | +𝐶

•
∫
𝑒𝑎𝑥𝑑𝑥 = 1

𝑎 𝑒
𝑎𝑥 +𝐶

•
∫

sin(𝑎𝑥 )𝑑𝑥 = − 1
𝑎 cos(𝑎𝑥 ) +𝐶

•
∫

cos(𝑎𝑥 )𝑑𝑥 = 1
𝑎 sin(𝑎𝑥 ) +𝐶

•
∫ 1

1+𝑥2 𝑑𝑥 = arctan(𝑥 ) +𝐶

•
∫ 1√

1−𝑥2
𝑑𝑥 = arcsin(𝑥 ) +𝐶

16. Integral Properties:
• Linearity:

∫ 𝑏
𝑎

[𝑎 𝑓 (𝑥 ) + 𝑏𝑔 (𝑥 ) ] 𝑑𝑥 = 𝑎
∫ 𝑏
𝑎
𝑓 (𝑥 )𝑑𝑥 +

𝑏
∫ 𝑏
𝑎
𝑔 (𝑥 )𝑑𝑥

• Additivity:
∫ 𝑏
𝑎
𝑓 (𝑥 )𝑑𝑥 +

∫ 𝑐
𝑏
𝑓 (𝑥 )𝑑𝑥 =

∫ 𝑐
𝑎
𝑓 (𝑥 )𝑑𝑥

• Reversal of limits:
∫ 𝑏
𝑎
𝑓 (𝑥 )𝑑𝑥 = −

∫ 𝑎
𝑏
𝑓 (𝑥 )𝑑𝑥

• If 𝑓 (𝑥 ) ≥ 0 on [𝑎, 𝑏] then
∫ 𝑏
𝑎
𝑓 (𝑥 )𝑑𝑥 ≥ 0

• Absolute value: |
∫ 𝑏
𝑎
𝑓 (𝑥 )𝑑𝑥 | ≤

∫ 𝑏
𝑎

| 𝑓 (𝑥 ) |𝑑𝑥
17. Mean Value Theorem (MVT):

• Differentiation: If 𝑓 is continuous on [𝑎, 𝑏] and differentiable on
(𝑎, 𝑏) , then there exists 𝑐 ∈ (𝑎, 𝑏) such that:

𝑓 ′ (𝑐) = 𝑓 (𝑏) − 𝑓 (𝑎)
𝑏 − 𝑎

• Rolle’s Theorem: If 𝑓 (𝑎) = 𝑓 (𝑏) , then there exists 𝑐 ∈ (𝑎, 𝑏)
such that 𝑓 ′ (𝑐) = 0.

• Mean Value Theorem for Integrals: If 𝑓 is continuous on [𝑎, 𝑏],
then there exists 𝑐 ∈ [𝑎, 𝑏] such that:∫ 𝑏

𝑎
𝑓 (𝑥 )𝑑𝑥 = 𝑓 (𝑐) (𝑏 − 𝑎)

18. Limit Definition of Derivative:
• For 𝑓 : R → R, the derivative at 𝑥 is

𝑓 ′ (𝑥 ) = lim
ℎ→0

𝑓 (𝑥 + ℎ) − 𝑓 (𝑥 )
ℎ

• For 𝑓 : R𝑛 → R, the partial derivative with respect to 𝑥𝑖 at 𝑥 is
𝜕 𝑓

𝜕𝑥𝑖
(𝑥 ) = lim

ℎ→0

𝑓 (𝑥 + ℎ𝑒𝑖 ) − 𝑓 (𝑥 )
ℎ

19. Limit Definition of Hessian (Second Derivatives):
• For 𝑓 : R𝑛 → R, the second partial derivative is

𝜕2 𝑓
𝜕𝑥𝑖𝜕𝑥 𝑗

(𝑥 ) = lim
ℎ→0

1
ℎ

(
𝜕 𝑓

𝜕𝑥𝑖
(𝑥 + ℎ𝑒 𝑗 ) −

𝜕 𝑓

𝜕𝑥𝑖
(𝑥 )

)
• Alternatively,

𝜕2 𝑓
𝜕𝑥𝑖𝜕𝑥 𝑗

(𝑥 ) = lim
ℎ→0

𝑓 (𝑥 + ℎ𝑒𝑖 + ℎ𝑒 𝑗 ) − 𝑓 (𝑥 + ℎ𝑒𝑖 ) − 𝑓 (𝑥 + ℎ𝑒 𝑗 ) + 𝑓 (𝑥 )
ℎ2

where 𝑒𝑖 and 𝑒 𝑗 are standard basis vectors.
20. Limits:

• lim
𝑥→𝑎

𝑓 (𝑥 ) : The value 𝑓 (𝑥 ) approaches as 𝑥 approaches 𝑎

• lim
𝑥→0

sin 𝑥
𝑥

= 1

• lim
𝑥→0

1 − cos 𝑥
𝑥2 =

1
2

• lim
𝑥→0

𝑒𝑥 − 1
𝑥

= 1

• lim
𝑛→∞

(
1 + 𝑥

𝑛

)𝑛
= 𝑒𝑥

• lim
𝑥→0

(1 + 𝑥 )1/𝑥 = 𝑒

• lim
𝑥→0+

𝑥𝑎 ln 𝑥 = 0 for 𝑎 > 0

21. Lipschitz Condition:
• A function 𝑓 : 𝐷 → R is Lipschitz continuous on 𝐷 if there exists
𝐿 ≥ 0 such that for all 𝑥, 𝑦 ∈ 𝐷:

∥ 𝑓 (𝑥 ) − 𝑓 (𝑦) ∥ ≤ 𝐿 ∥𝑥 − 𝑦 ∥
• 𝐿 is called the Lipschitz constant.

2 Convex Sets
Definition 1 Let 𝑆 ⊆ R𝑛 be a set. We say that
1. 𝑆 is affine if 𝛼𝑥 + (1 − 𝛼)𝑦 ∈ 𝑆 whenever 𝑥, 𝑦 ∈ 𝑆 and 𝛼 ∈ R;
2. 𝑆 is convex if 𝛼𝑥 + (1 − 𝛼)𝑦 ∈ 𝑆 whenever 𝑥, 𝑦 ∈ 𝑆 and 𝛼 ∈ [0, 1].
Given 𝑥, 𝑦 ∈ R𝑛 and 𝛼 ∈ R, the vector 𝑧 = 𝛼𝑥 + (1 − 𝛼)𝑦 is called
an affine combination of 𝑥 and 𝑦. If 𝛼 ∈ [0, 1], then 𝑧 is called a convex
combination of 𝑥 and 𝑦.
Geometrically, when 𝑥 and 𝑦 are distinct points inR𝑛 , the set 𝐿 = {𝑧 ∈ R𝑛 :
𝑧 = 𝛼𝑥 + (1− 𝛼)𝑦, 𝛼 ∈ R} of all affine combinations of 𝑥 and 𝑦 is the line
determined by 𝑥 and 𝑦, and the set 𝑆 = {𝑧 ∈ R𝑛 : 𝑧 = 𝛼𝑥+ (1− 𝛼)𝑦, 𝛼 ∈
[0, 1] } is the line segment between 𝑥 and 𝑦. By convention, the empty set ∅
is affine and hence also convex.
linear ⇒ affine ⇒ convex.
1. An affine combination of the points 𝑥1 , . . . , 𝑥𝑘 ∈ R𝑛 is a point of the
form 𝑧 =

∑𝑘
𝑖=1 𝛼𝑖 𝑥𝑖 , where

∑𝑘
𝑖=1 𝛼𝑖 = 1.

2. A convex combination of the points 𝑥1 , . . . , 𝑥𝑘 ∈ R𝑛 is a point of the
form 𝑧 =

∑𝑘
𝑖=1 𝛼𝑖 𝑥𝑖 , where

∑𝑘
𝑖=1 𝛼𝑖 = 1 and 𝛼1 , . . . , 𝛼𝑘 ≥ 0.

Proposition 1 Let 𝑆 ⊆ R𝑛 be non-empty. The following are equivalent:
(a) 𝑆 is affine.
(b) Any affine combination of points in 𝑆 belongs to 𝑆.
(c) 𝑆 is the translation of some linear subspace𝑉 ⊆ R𝑛 ; i.e., 𝑆 is of the form

{𝑥} + 𝑉 = {𝑥 + 𝑣 ∈ R𝑛 : 𝑣 ∈ 𝑉 } for some 𝑥 ∈ R𝑛 .
Note: Though 𝑉 is unique, 𝑥 is not. 𝑉 is parallel of 𝑆 pass 0. For 𝑛
dimensional 𝑆, there are (𝑛 + 1) types of subspaces: origin, line, plane, ...
{𝑥 : 𝐴𝑥 = 𝑏} is affine. {𝑥 : 𝐴𝑥 ≤ 𝑏} is convex but not affine.
Proposition 2 Let 𝑆 ⊆ R𝑛 be arbitrary. Then, the following are equivalent:

(a) 𝑆 is convex.
(b) Any convex combination of points in 𝑆 belongs to 𝑆.
Definition A set 𝐾 ⊆ R𝑛 is called a cone if {𝛼𝑥 : 𝛼 > 0} ⊆ 𝐾 whenever
𝑥 ∈ 𝐾 . If 𝐾 is also convex, then 𝐾 is called a convex cone.
A cone need not be convex. Eg: two lines.
Definition 2 Let 𝑆 ⊆ R𝑛 be arbitrary.
1. The affine hull of 𝑆, aff(𝑆) , is the intersection of all affine subspaces

containing 𝑆. aff(𝑆) is the smallest affine subspace that contains 𝑆.
2. The convex hull of 𝑆, conv(𝑆) , is the intersection of all convex sets

containing 𝑆. conv(𝑆) is the smallest convex set that contains 𝑆.
Proposition 3 Let 𝑆 ⊆ R𝑛 be arbitrary. Then, the following hold:

(a) aff(𝑆) is the set of all affine combinations of points in 𝑆.
(b) conv(𝑆) is the set of all convex combinations of points in 𝑆.
Definition 3 Let 𝑆 ⊆ R𝑛 be arbitrary. The dimension of 𝑆, denoted by
dim(𝑆) , is the dimension of the affine hull of 𝑆.
Given a non-empty set 𝑆 ⊆ R𝑛 , we always have 0 ≤ dim(𝑆) ≤ 𝑛.
Example 2 (Dimension of a Set) Consider the two-point set 𝑆 =

{ (1, 1) , (3, 2) } ⊆ R2 . By Proposition 3(a), we have aff(𝑆) = {𝛼(1, 1) +
(1 − 𝛼) (3, 2) : 𝛼 ∈ R} ⊆ R2 . It is easy to verify that aff(𝑆) =
{ (0, 1/2) } + 𝑉 , where 𝑉 = {𝑡 (1, 1/2) : 𝑡 ∈ R} is the linear subspace
generated by the vector (1, 1/2) . Hence, we have dim(𝑆) = dim(𝑉 ) = 1.

2.1 Convexity-Preserving Operations
2.1.1 Set Operations
Intersection of two convex sets is always convex.
2.1.2 Affine Functions
We say that a map 𝐴 : R𝑛 → R𝑚 is affine if 𝐴(𝛼𝑥1 + (1 − 𝛼)𝑥2 ) =
𝛼𝐴(𝑥1 ) + (1 − 𝛼)𝐴(𝑥2 ) for all 𝑥1 , 𝑥2 ∈ R𝑛 and 𝛼 ∈ R. It can be
shown that 𝐴 is affine iff there exist 𝐴0 ∈ R𝑚×𝑛 and 𝑦0 ∈ R𝑚 such that
𝐴(𝑥 ) = 𝐴0𝑥 + 𝑦0 for all 𝑥 ∈ R𝑛 .
Proposition 4 Let 𝐴 : R𝑛 → R𝑚 be an affine mapping and 𝑆 ⊆ R𝑛

be a convex set. Then, the image 𝐴(𝑆) = {𝐴(𝑥 ) ∈ R𝑚 : 𝑥 ∈ 𝑆} is
convex. Conversely, if 𝑇 ⊆ R𝑚 is a convex set, then the inverse image
𝐴−1 (𝑇 ) = {𝑥 ∈ R𝑛 : 𝐴(𝑥 ) ∈ 𝑇 } is convex.



(a) Rotation: R𝑛 ∋ 𝑥 ↦→ 𝐴(𝑥 ) =𝑈𝑥 ∈ R𝑛

𝑈 ∈ R𝑛×𝑛 orthogonal matrix (i.e.,𝑈⊤𝑈 =𝑈𝑈⊤ = 𝐼)

For 𝑛 = 2: 𝑈 =

[
cos 𝜃 sin 𝜃
− sin 𝜃 cos 𝜃

]
(b) Projection: R𝑛 ∋ 𝑥 ↦→ 𝐴(𝑥 ) = 𝑃𝑥 ∈ R𝑛

𝑃 ∈ R𝑛×𝑛 projection matrix (i.e., 𝑃2 = 𝑃)
orthogonal projection (i.e., 𝑃2 = 𝑃, 𝑃 = 𝑃⊤)

eg. 𝑃 =

[
0 1
0 1

]
, 𝑃𝑥 =

[
𝑥2
𝑥2

]
, 𝑃′ = 1

2

[
1 1
1 1

]
= 1

2 𝑒𝑒
⊤ .

2.1.3 Perspective Functions
Define the perspective function 𝑃 : R𝑛 × R++ → R𝑛 by 𝑃 (𝑥, 𝑡 ) = 𝑥/𝑡 .
Proposition 5 Let 𝑃 : R𝑛 × R++ → R𝑛 be the perspective function and
𝑆 ⊆ R𝑛 × R++ be a convex set. Then, the image 𝑃 (𝑆) = {𝑥/𝑡 ∈ R𝑛 :
(𝑥, 𝑡 ) ∈ 𝑆} is convex. Conversely, if 𝑇 ⊆ R𝑛 is a convex set, then the
inverse image 𝑃−1 (𝑇 ) = { (𝑥, 𝑡 ) ∈ R𝑛 × R++ : 𝑥/𝑡 ∈ 𝑇 } is convex.
Proof For any 𝑥1 = ( �̄�1 , 𝑡1 ) ∈ R𝑛 × R++ , 𝑥2 = ( �̄�2 , 𝑡2 ) ∈ R𝑛 × R++ ,

and 𝛼 ∈ [0, 1], we have 𝑃 (𝛼𝑥1 + (1 − 𝛼)𝑥2 ) =
𝛼�̄�1+(1−𝛼) �̄�2
𝛼𝑡1+(1−𝛼)𝑡2

=

𝛽𝑃 (𝑥1 ) + (1 − 𝛽)𝑃 (𝑥2 ) ,
where 𝛽 =

𝛼𝑡1
𝛼𝑡1+(1−𝛼)𝑡2

∈ [0, 1].
Moreover, as 𝛼 increases from 0 to 1, 𝛽 increases from 0 to 1. It follows that
𝑃 ( [𝑥1 , 𝑥2 ] ) = [𝑃 (𝑥1 ) , 𝑃 (𝑥2 ) ] ⊆ R𝑛 . This completes the proof. □
Corollary 1 Let 𝐴 : R𝑛 → R𝑚+1 be the affine map given by

𝐴(𝑥 ) =

[
𝑄

𝑐⊤

]
𝑥 +

[
𝑢
𝑑

]
, where 𝑄 ∈ R𝑚×𝑛 , 𝑐 ∈ R𝑛 , 𝑢 ∈ R𝑚 , 𝑑 ∈ R.

Let 𝐷 = {𝑥 ∈ R𝑛 : 𝑐⊤𝑥 + 𝑑 > 0}. Define the linear-fractional map
𝑓 : 𝐷 → R𝑚 by 𝑓 = 𝑃 ◦ 𝐴, where 𝑃 : R𝑚 × R++ → R𝑚 is the
perspective function. If 𝑆 ⊆ 𝐷 is convex, then the image 𝑓 (𝑆) is convex.
Conversely, if 𝑇 ⊆ R𝑚 is convex, then the inverse image 𝑓 −1 (𝑇 ) is convex.

2.2 Topological Properties
1. Interior: int(𝑆) = {𝑥 ∈ 𝑆 : 𝐵(𝑥, 𝜖 ) ⊆ 𝑆 for some 𝜖 > 0}.
2. 𝑆 is open if 𝑆 = int(𝑆) . Eg. ∅, R𝑛 are open.
3. 𝑆 is closed if R𝑛 \ 𝑆 is open. Eg. ∅, R𝑛 are closed.
4. A set 𝑆 ⊆ R𝑛 is compact if it is closed and bounded.
Facts: 1. The intersection of any family of closed sets is closed.
2. Let 𝑓 : R𝑛 → R be continuous and 𝑐 ∈ R be a constant. Then
𝑆 = {𝑥 ∈ R𝑛 : 𝑓 (𝑥 ) ≤ 𝑐} is closed.
Eg. 𝐻− (𝑠, 𝑐) = {𝑥 ∈ R𝑛 : 𝑠⊤𝑥 ≤ 𝑐}; 𝑆 = {𝑥 ∈ R𝑛 : 𝐴𝑥 ≤ 𝑏}
3. 𝑆 is closed iff ∀ convergent sequence {𝑥𝑛 } in 𝑆 (𝑥𝑛 ∈ 𝑆, 𝑥𝑛 → 𝑥), the
limit is in 𝑆 (𝑥 ∈ 𝑆).
Definition 4 Let 𝑆 ⊆ R𝑛 be arbitrary. We say that 𝑥 ∈ 𝑆 belongs to the
relative interior of 𝑆, denoted by 𝑥 ∈ rel int(𝑆) , if there exists an 𝜖 > 0
such that 𝐵(𝑥, 𝜖 ) ∩ aff(𝑆) ⊆ 𝑆. The relative boundary of 𝑆, denoted by
rel bd(𝑆) , is defined by rel bd(𝑆) = cl(𝑆) \ rel int(𝑆) .
Theorem 1 Let 𝑆 ⊆ R𝑛 non-empty and convex, rel int(𝑆) is non-empty.
Proposition 6 𝑆 ⊆ R𝑛 be non-empty and convex. ∀𝑥 ∈ cl(𝑆) and 𝑥′ ∈
rel int(𝑆) , (𝑥, 𝑥′ ] = {𝛼𝑥+ (1−𝛼)𝑥′ ∈ R𝑛 : 𝛼 ∈ [0, 1] } ⊆ rel int(𝑆) .
Weierstrass Theorem If 𝑆 ⊆ R𝑛 is a non-empty compact set and 𝑓 : 𝑆 → R
is a continuous function, then 𝑓 attains its maximum and minimum on 𝑆.

2.3 Projection onto Closed Convex Sets
Theorem 2 Let 𝑆 ⊆ R𝑛 be non-empty, closed, and convex. Then, for every
𝑥 ∈ R𝑛 , there exists a unique point 𝑧∗ ∈ 𝑆 that is closest to 𝑥.
Proof (Existence)

(Uniqueness) Let 𝜇∗ = ∥𝑥 − 𝑧∗ ∥2 and suppose that 𝑧1 , 𝑧2 ∈ 𝑆 are such
that 𝜇∗ = ∥𝑥 − 𝑧1 ∥2 = ∥𝑥 − 𝑧2 ∥2 . Consider the point �̄� = 1

2 (𝑧1 + 𝑧2 ) .
By Pythagoras’ theorem, we have ∥ �̄� − 𝑥 ∥2

2 = (𝜇∗ )2 − 1
4 ∥𝑧1 − 𝑧2 ∥2

2 . In
particular, if 𝑧1 ≠ 𝑧2 , then ∥ �̄� − 𝑥 ∥2

2 < (𝜇∗ )2 , which is a contradiction. □
Point 𝑧∗ is the projection of 𝑥 on 𝑆: Π𝑆 (𝑥 ) = arg min𝑧∈𝑆 ∥𝑥 − 𝑧 ∥2

2 .
Theorem 3 Let 𝑆 ⊆ R𝑛 non-empty, closed, convex. Given any 𝑥 ∈ R𝑛 , we
have 𝑧∗ = Π𝑆 (𝑥 ) iff 𝑧∗ ∈ 𝑆 and (𝑧 − 𝑧∗ )⊤ (𝑥 − 𝑧∗ ) ≤ 0 for all 𝑧 ∈ 𝑆.
Proof Let 𝑧∗ = Π𝑆 (𝑥 ) and 𝑧 ∈ 𝑆. Consider points of the form 𝑧 (𝛼) =
𝛼𝑧 + (1 − 𝛼)𝑧∗ , where 𝛼 ∈ [0, 1]. By convexity, we have 𝑧 (𝛼) ∈ 𝑆.
Moreover, we have ∥𝑧∗ − 𝑥 ∥2 ≤ ∥𝑧 (𝛼) − 𝑥 ∥2 for all 𝛼 ∈ [0, 1]. On
the other hand, note that ∥𝑧 (𝛼) − 𝑥 ∥2

2 = ∥𝑧∗ + 𝛼(𝑧 − 𝑧∗ ) − 𝑥 ∥2
2 =

∥𝑧∗ − 𝑥 ∥2
2 + 2𝛼(𝑧 − 𝑧∗ )⊤ (𝑧∗ − 𝑥 ) + 𝛼2 ∥𝑧 − 𝑧∗ ∥2

2 . Thus, we see that
∥𝑧 (𝛼) − 𝑥 ∥2

2 ≥ ∥𝑧∗ − 𝑥 ∥2
2 for all 𝛼 ∈ [0, 1] iff (𝑧 − 𝑧∗ )⊤ (𝑧∗ − 𝑥 ) ≥ 0.

Conversely, suppose that for some 𝑧′ ∈ 𝑆, we have (𝑧 − 𝑧′ )⊤ (𝑥 − 𝑧′ ) ≤ 0
for all 𝑧 ∈ 𝑆. Upon setting 𝑧 = Π𝑆 (𝑥 ) , we have (Π𝑆 (𝑥 ) −𝑧′ )⊤ (𝑥−𝑧′ ) ≤
0. (1) On the other hand, by our argument above, the point Π𝑆 (𝑥 ) satisfies
(𝑧′ −Π𝑆 (𝑥 ) )⊤ (𝑥 −Π𝑆 (𝑥 ) ) ≤ 0. (2) Upon adding (1) and (2), we obtain
(Π𝑆 (𝑥 ) − 𝑧′ )⊤ (Π𝑆 (𝑥 ) − 𝑧′ ) = ∥Π𝑆 (𝑥 ) − 𝑧′ ∥2

2 ≤ 0, which is possible
only when 𝑧′ = Π𝑆 (𝑥 ) . □
2.4 Separation Theorems
Theorem 4 (Point-Set Separation) Let 𝑆 ⊆ R𝑛 be non-empty, closed, and
convex and 𝑥 ∉ 𝑆. Then, ∃𝑦 ∈ R𝑛 s.t. max𝑧∈𝑆 𝑦⊤𝑧 < 𝑦⊤𝑥.

Theorem 5 A closed convex set𝑆 ⊆ R𝑛 is the intersection of all the halfspaces
containing 𝑆, i.e., 𝑆 =

⋂
𝐻 is halfspace; 𝐻⊇𝑆 𝐻 .

Proof We may assume that ∅ ⊂ 𝑆 ⊆ R𝑛 , for otherwise the theorem is trivial.
Let 𝑥 ∈ R𝑛 \ 𝑆 be arbitrary. Then, by Theorem 4, there exist 𝑦 ∈ R𝑛 and
𝑐 = max𝑧∈𝑆 𝑦⊤𝑧 ∈ R such that the halfspace 𝐻− (𝑦, 𝑐) = {𝑧 ∈ R𝑛 :
𝑦⊤𝑧 ≤ 𝑐} contains 𝑆 but not 𝑥. It follows that the intersection of all the
halfspaces containing 𝑆 is precisely 𝑆 itself. □
Theorem 6 (Set-Set Separation) Let 𝑆1 , 𝑆2 ⊆ R𝑛 be non-empty, closed, and
convex with 𝑆1 ∩ 𝑆2 = ∅ and 𝑆2 bounded. Then, there exists a 𝑦 ∈ R𝑛 such
that max𝑧∈𝑆1 𝑦

⊤𝑧 < min𝑢∈𝑆2 𝑦
⊤𝑢.

Proof First, note that the set 𝑆1 − 𝑆2 = {𝑧 − 𝑢 ∈ R : 𝑧 ∈ 𝑆1 , 𝑢 ∈ 𝑆2 } is
non-empty and convex. Moreover, we claim that it is closed. To see this, let
𝑥1 , 𝑥2 , . . . be a sequence in 𝑆1 − 𝑆2 such that 𝑥𝑘 → 𝑥. We need to show

that 𝑥 ∈ 𝑆1 − 𝑆2 . Since 𝑥𝑘 ∈ 𝑆1 − 𝑆2 , there exist 𝑧𝑘 ∈ 𝑆1 and 𝑢𝑘 ∈ 𝑆2
such that 𝑥𝑘 = 𝑧𝑘 −𝑢𝑘 for 𝑘 = 1, 2, . . .. Since 𝑆2 is compact, there exists a
subsequence {𝑢𝑘𝑖 } such that 𝑢𝑘𝑖 → 𝑢 ∈ 𝑆2 . Since 𝑥𝑘𝑖 → 𝑥, we conclude
that 𝑧𝑘𝑖 → 𝑥 + 𝑢. Since 𝑆1 is closed, we conclude that 𝑥 + 𝑢 ∈ 𝑆1 . It then
follows that 𝑥 = (𝑥 + 𝑢) − 𝑢 ∈ 𝑆1 − 𝑆2 , as desired.
We are now in a position to apply Theorem 4 to the non-empty closed con-
vex set 𝑆1 − 𝑆2 . Indeed, since 𝑆1 ∩ 𝑆2 = ∅, we see that 0 ∉ 𝑆1 − 𝑆2 .
By Theorem 4, there exist 𝑦 ∈ R𝑛 , 𝑧∗ ∈ 𝑆1 , and 𝑢∗ ∈ 𝑆2 such that
𝑦⊤ (𝑧∗ − 𝑢∗ ) = max𝑣∈𝑆1−𝑆2 𝑦

⊤𝑣 < 0. Since 𝑆2 is compact, we have
𝑦⊤𝑢∗ = min𝑢∈𝑆2 𝑦

⊤𝑢. This implies that 𝑦⊤𝑧∗ = max𝑧∈𝑆1 𝑦
⊤𝑧. Hence,

we obtain max𝑧∈𝑆1 𝑦
⊤𝑧 < min𝑢∈𝑆2 𝑦

⊤𝑢, as desired. □

3 Convex Functions
3.1 Basic Definitions and Properties
Definition 5 Let 𝑓 : R𝑛 → R ∪ {+∞} be an extended real-valued function
that is not identically +∞.
1. We say 𝑓 is convex if 𝑓 (𝛼𝑥1+(1−𝛼)𝑥2 ) ≤ 𝛼 𝑓 (𝑥1 )+ (1−𝛼) 𝑓 (𝑥2 )

for all 𝑥1 , 𝑥2 ∈ R𝑛 and 𝛼 ∈ [0, 1]; 𝑓 is concave if − 𝑓 is convex.
2. The epigraph of 𝑓 is the set epi( 𝑓 ) = { (𝑥, 𝑡 ) ∈ R𝑛 × R : 𝑓 (𝑥 ) ≤ 𝑡 }.
3. The effective domain of 𝑓 is set dom( 𝑓 ) = {𝑥 ∈ R𝑛 : 𝑓 (𝑥 ) < +∞}.

4. The indicator of 𝑆 is the function I𝑆 (𝑥 ) =
{
0 if 𝑥 ∈ 𝑆
+∞ otherwise

We have inf𝑥∈𝑆 𝑓 (𝑥 ) ⇐⇒ inf𝑥∈R𝑛 { 𝑓 (𝑥 ) + I𝑆 (𝑥 ) }
Proposition 7 Let 𝑓 : R𝑛 → R ∪ {+∞}. Then, 𝑓 is convex (as a function)
iff epi( 𝑓 ) is convex (as a set).
Note: Also, set 𝑆 is convex iff I𝑆 (𝑥 ) is convex.
Corollary 2 (Jensen’s Inequality) Let 𝑓 : R𝑛 → R ∪ {+∞} be as in Def-
inition 5. Then, 𝑓 is convex iff 𝑓

(∑𝑘
𝑖=1 𝛼𝑖 𝑥𝑖

)
≤ ∑𝑘

𝑖=1 𝛼𝑖 𝑓 (𝑥𝑖 ) for any

𝑥1 , . . . , 𝑥𝑘 ∈ R𝑛 and 𝛼1 , . . . , 𝛼𝑘 ∈ [0, 1] such that
∑𝑘
𝑖=1 𝛼𝑖 = 1.

Note: The epigraph epi( 𝑓 ) of 𝑓 is closely related to, but not the same as, the
𝑡-level set 𝐿𝑡 ( 𝑓 ) of 𝑓 , where 𝐿𝑡 ( 𝑓 ) = {𝑥 ∈ R𝑛 : 𝑓 (𝑥 ) ≤ 𝑡 } and 𝑡 ∈ R
is arbitrary. Even if 𝐿𝑡 ( 𝑓 ) is convex for all 𝑡 ∈ R, the function 𝑓 may not be
convex. E.g., the function 𝑥 ↦→ 𝑥3 . A function whose domain is convex and
whose 𝑡-level sets are convex for all 𝑡 ∈ R is called a quasi-convex function.

3.2 Conjugate Function
Theorem 7 Let 𝑓 : R𝑛 → R∪ {+∞} be a convex function such that epi( 𝑓 )
is closed. Then, 𝑓 can be represented as the pointwise supremum of all affine
functions ℎ : R𝑛 → R satisfying ℎ ≤ 𝑓 .
Given a convex function 𝑓 : R𝑛 → R ∪ {+∞}, consider the set 𝑆 𝑓 =

{ (𝑦, 𝑐) ∈ R𝑛×R : 𝑦⊤𝑥−𝑐 ≤ 𝑓 (𝑥 )∀𝑥 ∈ R𝑛 }, which consists of the co-
efficients of those affine functions ℎ : R𝑛 → R satisfying ℎ ≤ 𝑓 . Clearly, we
have 𝑦⊤𝑥 − 𝑐 ≤ 𝑓 (𝑥 ) for all 𝑥 ∈ R𝑛 iff sup𝑥∈R𝑛 {𝑦⊤𝑥 − 𝑓 (𝑥 ) } ≤ 𝑐.
This shows that 𝑆 𝑓 is the epigraph of the function 𝑓 ∗ : R𝑛 → R ∪ {+∞}
given by 𝑓 ∗ (𝑦) = sup𝑥∈R𝑛 {𝑦⊤𝑥 − 𝑓 (𝑥 ) }.Moreover, observe that 𝑆 𝑓 is
closed and convex, implies 𝑓 ∗ is convex. 𝑓 ∗ is called the conjugate of 𝑓 .

3.3 Convexity-Preserving Transformations
Theorem 8 The following hold:

(a) (Non-Negative Combinations) Let 𝑓1 , . . . , 𝑓𝑚 be convex functions sat-
isfying

⋂𝑚
𝑖=1 dom( 𝑓𝑖 ) ≠ ∅. Then, for any 𝛼1 , . . . , 𝛼𝑚 ≥ 0,

𝑓 (𝑥 ) = ∑𝑚
𝑖=1 𝛼𝑖 𝑓𝑖 (𝑥 ) is convex.

(b) (Pointwise Supremum) Let 𝐼 be an index set and { 𝑓𝑖 }𝑖∈𝐼 , where
𝑓𝑖 : R𝑛 → R ∪ {+∞} for all 𝑖 ∈ 𝐼 , be a family of convex functions.
Define the pointwise supremum 𝑓 : R𝑛 → R ∪ {+∞} of { 𝑓𝑖 }𝑖∈𝐼 by
𝑓 (𝑥 ) = sup𝑖∈𝐼 𝑓𝑖 (𝑥 ) . Suppose that dom( 𝑓 ) ≠ ∅. Then 𝑓 is convex.

(c) (Affine Composition) Let 𝑔 : R𝑚 → R∪{+∞} be a convex function and
𝐴 : R𝑚 → R𝑛 be an affine mapping. Suppose range(𝐴)∩dom(𝑔) ≠ ∅.
Then 𝑓 : R𝑛 → R ∪ {+∞} defined by 𝑓 (𝑥 ) = 𝑔 (𝐴(𝑥 ) ) is convex.

(d) (Composition with an Increasing Convex Function) Let 𝑔 : R →
R ∪ {+∞} and ℎ : R → R ∪ {+∞} be convex functions that are
not identically +∞. Suppose that ℎ is increasing on dom(ℎ) . Define
𝑓 (𝑥 ) = ℎ (𝑔 (𝑥 ) ) , with the convention that ℎ (+∞) = +∞. Suppose
that dom( 𝑓 ) ≠ ∅. Then, 𝑓 is convex.

(e) (Restriction on Lines) Given a function 𝑓 : R𝑛 → R∪ {+∞} that is not
identically +∞, a point 𝑥0 ∈ R𝑛 , and a direction ℎ ∈ R𝑛 , define the
function 𝑓𝑥0 ,ℎ : R → R ∪ {+∞} by 𝑓𝑥0 ,ℎ (𝑡 ) = 𝑓 (𝑥0 + 𝑡ℎ) . Then,
𝑓 is convex iff 𝑓𝑥0 ,ℎ is convex for any 𝑥0 ∈ R𝑛 and ℎ ∈ R𝑛 .

3.4 Differentiable Convex Functions
Theorem 9 Let 𝑓 : Ω → R be a differentiable function on the open
set Ω ⊆ R𝑛 and 𝑆 ⊆ Ω be a convex set. Then, 𝑓 is convex on 𝑆 iff
𝑓 (𝑥 ) ≥ 𝑓 ( �̄� ) + (∇ 𝑓 ( �̄� ) )⊤ (𝑥 − �̄� ) for all 𝑥, �̄� ∈ 𝑆.
Geometric interpretation: the epigraph of 𝑓 is supported by its tangent hyper-
plane at every ( �̄�, 𝑓 ( �̄� ) ) ∈ R𝑛 × R.
Proof Suppose that 𝑓 is convex on 𝑆. Let 𝑥, �̄� ∈ 𝑆 and 𝛼 ∈ (0, 1) . Then,
𝑓 (𝑥 ) ≥ 𝑓 (𝛼𝑥+(1−𝛼) �̄�)−(1−𝛼) 𝑓 ( �̄�)

𝛼 = 𝑓 ( �̄� ) + 𝑓 ( �̄�+𝛼(𝑥− �̄�) )− 𝑓 ( �̄�)
𝛼 .

Now, recall that lim𝛼↓0
𝑓 ( �̄�+𝛼(𝑥− �̄�) )− 𝑓 ( �̄�)

𝛼 is the directional derivative
of 𝑓 at �̄� in the direction 𝑥 − �̄� and is equal to (∇ 𝑓 ( �̄� ) )⊤ (𝑥 − �̄� ) . Hence,
upon letting 𝛼 ↓ 0 in (4), we have 𝑓 (𝑥 ) ≥ 𝑓 ( �̄� ) + (∇ 𝑓 ( �̄� ) )⊤ (𝑥 − �̄� ) .
Conversely, let 𝑥1 , 𝑥2 ∈ 𝑆 and 𝛼 ∈ (0, 1) . Then, we have �̄� =
𝛼𝑥1 + (1 − 𝛼)𝑥2 ∈ 𝑆, which implies that 𝑓 (𝑥1 ) ≥ 𝑓 ( �̄� ) + (1 −
𝛼) (∇ 𝑓 ( �̄� ) )⊤ (𝑥1 − 𝑥2 ) ; 𝑓 (𝑥2 ) ≥ 𝑓 ( �̄� ) + 𝛼(∇ 𝑓 ( �̄� ) )⊤ (𝑥2 − 𝑥1 ) .
Obtain the result by multiplying first by 𝛼 and second by 1 − 𝛼 and sum. □

Theorem 10 Let 𝑓 : 𝑆 → R be twice continuously differentiable on the open
convex set 𝑆 ⊆ R𝑛 . Then, 𝑓 is convex on 𝑆 iff ∇2 𝑓 (𝑥 ) ⪰ 0 for all 𝑥 ∈ 𝑆.
Proof Suppose that ∇2 𝑓 (𝑥 ) ⪰ 0 for all 𝑥 ∈ 𝑆. Let 𝑥1 , 𝑥2 ∈ 𝑆.
By Taylor’s theorem, there exists an �̄� ∈ [𝑥1 , 𝑥2 ] ⊆ 𝑆 s.t. 𝑓 (𝑥2 ) =

𝑓 (𝑥1 ) + (∇ 𝑓 (𝑥1 ) )⊤ (𝑥2 − 𝑥1 ) + 1
2 (𝑥2 − 𝑥1 )⊤∇2 𝑓 ( �̄� ) (𝑥2 − 𝑥1 ) .[7]

Since ∇2 𝑓 (𝑥 ) ⪰ 0, we have (𝑥2 − 𝑥1 )⊤∇2 𝑓 ( �̄� ) (𝑥2 − 𝑥1 ) ≥ 0. Upon
substituting this inequality and invoking Theorem 9, 𝑓 is convex on 𝑆.
Conversely, suppose that ∇2 𝑓 (𝑥 ) ⪰̸ 0 for some �̄� ∈ 𝑆. Then, there ex-
ists a 𝑣 ∈ R𝑛 such that 𝑣⊤∇2 𝑓 ( �̄� )𝑣 < 0. Since 𝑆 is open and ∇2 𝑓
is continuous, there exists an 𝜖 > 0 such that �̄�′ = �̄� + 𝜖 𝑣 ∈ 𝑆 and
𝑣⊤∇2 𝑓 ( �̄� + 𝛼( �̄�′ − �̄� ) )𝑣 < 0 for all 𝛼 ∈ [0, 1]. Hence, by taking
𝑥1 = �̄� and 𝑥2 = �̄�′ in [7], 𝑓 (𝑥′ ) < 𝑓 ( �̄� ) + (∇ 𝑓 ( �̄� ) )⊤ (𝑥′ − �̄� ) . Hence,
by Theorem 9, 𝑓 is not convex on 𝑆. □
To see why 𝑆 must be open in Theorem 10, consider 𝑓 : R2 → R given
by 𝑓 (𝑥, 𝑦) = 𝑥2 − 𝑦2 , is convex on the set 𝑆 = R × {0}. But Hessian

∇2 𝑓 (𝑥, 𝑦) =
[
2 0
0 −2

]
for (𝑥, 𝑦) ∈ R2 , is nowhere psd.

3.5 Examples of Convex Functions
• Let 𝑓 : R𝑛 × S𝑛++ → R be given by 𝑓 (𝑥,𝑌 ) = 𝑥⊤𝑌−1𝑥.

epi( 𝑓 ) =
{
(𝑥,𝑌 , 𝑟 ) ∈ R𝑛 × S𝑛++ × R : 𝑌 ≻ 0, 𝑥⊤𝑌−1𝑥 ≤ 𝑟

}
=

{
(𝑥,𝑌 , 𝑟 ) ∈ R𝑛 × S𝑛++ × R :

[
𝑌 𝑥

𝑥⊤ 𝑟

]
⪰ 0, 𝑌 ≻ 0

}
, where the

last equality follows from the Schur complement. This shows that epi( 𝑓 )
is a convex set, which implies that 𝑓 is convex on R𝑛 × S𝑛++ .

• Let 𝑓 : R𝑚×𝑛 → R+ be given by 𝑓 (𝑋) = ∥𝑋∥2 , where ∥ · ∥2 de-
notes the spectral norm or largest singular value of the 𝑚 × 𝑛 matrix 𝑋.
𝑓 (𝑋) = sup

{
𝑢⊤𝑋𝑣 : ∥𝑢∥2 = 1, ∥𝑣 ∥2 = 1

}
. This shows that 𝑓 is a

pointwise supremum of a family of linear functions of 𝑋. Hence, 𝑓 is
convex.

• Let ∥ · ∥ : R𝑛 → R+ be a norm on R𝑛 and 𝑓 : R𝑛 → R+ be given
by 𝑓 (𝑥 ) = ∥𝑥 ∥ 𝑝 , where 𝑝 ≥ 1. Then, for any 𝑥 ∈ R𝑛 , we have
𝑓 (𝑥 ) = 𝑔 ( ∥𝑥 ∥ ) , where 𝑔 : R+ → R+ is given by 𝑔 (𝑧) = 𝑧𝑝 .

• Let 𝑓 : R𝑛 → R be given by 𝑓 (𝑥 ) = log
(∑𝑛
𝑖=1 exp(𝑥𝑖 )

)
. 𝜕2 𝑓
𝜕𝑥𝑖𝜕𝑥 𝑗

=
exp(𝑥𝑖 )∑𝑛
𝑖=1 exp(𝑥𝑖 )

− exp(2𝑥𝑖 )(∑𝑛
𝑖=1 exp(𝑥𝑖 )

)2 if 𝑖 = 𝑗 ,

−
exp(𝑥𝑖+𝑥 𝑗 )(∑𝑛
𝑖=1 exp(𝑥𝑖 )

)2 if 𝑖 ≠ 𝑗.

∇2 𝑓 (𝑥 ) = 1
(𝑒⊤𝑧)2

(
(𝑒⊤𝑧) diag(𝑧) − 𝑧𝑧⊤

)
, 𝑧 = (𝑒𝑥1 , ..., 𝑒𝑥𝑛 ) .

Now, for any 𝑣 ∈ R𝑛 , we have 𝑣⊤∇2 𝑓 (𝑥 )𝑣

= 1
(𝑒⊤𝑧)2

[(∑𝑛
𝑖=1 𝑧𝑖

) (∑𝑛
𝑖=1 𝑧𝑖𝑣

2
𝑖

)
−

(∑𝑛
𝑖=1 𝑧𝑖𝑣𝑖

)2
]

= 1
(𝑒⊤𝑧)2

[(∑𝑛
𝑖=1 (

√
𝑧𝑖 )2

) (∑𝑛
𝑖=1 (

√
𝑧𝑖𝑣

2
𝑖
)
)
−

(∑𝑛
𝑖=1 (

√
𝑧𝑖 ) (

√
𝑧𝑖𝑣𝑖 )

)2
]

≥ 0 by the Cauchy–Schwarz inequality. Hence, 𝑓 is convex.

• Suppose 𝑝 ∈ (0, 1) . 𝑓 : R𝑛++ → R given by 𝑓 (𝑥 ) =
(∑𝑛
𝑖=1 𝑥

𝑝

𝑖

)1/𝑝
.

𝜕2 𝑓
𝜕𝑥𝑖𝜕𝑥 𝑗

=


(1 − 𝑝) 𝑓 (𝑥 )−2

[
−

(∑𝑛
𝑖=1 𝑥

𝑝

𝑖

)
𝑥
𝑝−2
𝑖

+ 𝑥2(𝑝−1)
𝑖

]
𝑖 = 𝑗 ,

(1 − 𝑝) 𝑓 (𝑥 )−2𝑥𝑝−1
𝑖

𝑥
𝑝−1
𝑗

𝑖 ≠ 𝑗.

∇2 𝑓 (𝑥 ) = (1−𝑝) 𝑓 (𝑥 )−2
[
−

(∑𝑛
𝑖=1 𝑥

𝑝

𝑖

)
diag(𝑥𝑝−2

1 , . . . , 𝑥
𝑝−2
𝑛 ) + 𝑧𝑧⊤

]
,

where 𝑧𝑖 = 𝑥
𝑝−1
𝑖

for 𝑖 = 1, . . . , 𝑛.
Now, for any 𝑣 ∈ R𝑛 , we have 𝑣⊤∇2 𝑓 (𝑥 )𝑣

= (1−𝑝) 𝑓 (𝑥 )−2
[
−

(∑𝑛
𝑖=1 𝑥

𝑝

𝑖

) (∑𝑛
𝑖=1 𝑣

2
𝑖
𝑥
𝑝−2
𝑖

)
+

(∑𝑛
𝑖=1 𝑣𝑖 𝑥

𝑝−1
𝑖

)2
]

≤ 0, since −
(∑𝑛
𝑖=1 𝑥

𝑝

𝑖

) (∑𝑛
𝑖=1 𝑣

2
𝑖
𝑥
𝑝−2
𝑖

)
+

(∑𝑛
𝑖=1 𝑣𝑖 𝑥

𝑝−1
𝑖

)2
≤ 0.

by the Cauchy–Schwarz inequality. It follows that 𝑓 is concave on R𝑛++ .
• Let 𝑓 : S𝑛++ → R be given by 𝑓 (𝑋) = − ln det𝑋.

∇ 𝑓 (𝑋) = −𝑋−1; ∇2 𝑓 (𝑋) = 𝑋−1 ⊗ 𝑋−1 . ⊗: Kronecker product.
Since 𝑋−1 ≻ 0, 𝑋−1 ⊗ 𝑋−1 ≻ 0. It follows that 𝑓 is convex on S𝑛++ .
Alternatively, we can establish the convexity of 𝑓 on S𝑛++ by applying
Theorem 8(e). To begin, let 𝑋0 ∈ S𝑛++ and 𝐻 ∈ S𝑛 . Define the set
𝐷 = {𝑡 ∈ R : 𝑋0 + 𝑡𝐻 ≻ 0} = {𝑡 ∈ R : 𝜆min (𝑋0 + 𝑡𝐻 ) > 0}. Since
𝜆min is continuous, we see that 𝐷 is open and convex. Now, consider
𝑓𝑋0 ,𝐻 : 𝐷 → R given by 𝑓𝑋0 ,𝐻 (𝑡 ) = 𝑓 (𝑋0 + 𝑡𝐻 ) . For any 𝑡 ∈ 𝐷,

𝑓𝑋0 ,𝐻 (𝑡 ) = − ln det(𝑋0 + 𝑡𝐻 )

= − ln det
(
𝑋

1/2
0

(
𝐼 + 𝑡𝑋−1/2

0 𝐻𝑋
−1/2
0

)
𝑋

1/2
0

)
= −

(
𝑛∑︁
𝑖=1

ln(1 + 𝑡𝜆𝑖 ) + ln det𝑋0

)
and 𝑓 ′′

𝑋0 ,𝐻
(𝑡 ) = ∑𝑛

𝑖=1
𝜆2
𝑖

(1+𝑡𝜆𝑖 )2
≥ 0, where 𝜆1 , ..., 𝜆𝑛 are the eigen-

values of 𝑋−1/2
0 𝐻𝑋

−1/2
0 . So 𝑓𝑋0 ,𝐻 is convex on 𝐷. Together with

Theorem 8(e), implies 𝑓 is convex on S𝑛++ .
• Boyd: max eigenvalue of symmetric matrix. 𝑓 (𝑋) = sup{𝑦⊤𝑋𝑦 :

∥𝑦 ∥2 = 1}.

3.6 Non-Differentiable Convex Functions
Definition 6 Let 𝑓 : R𝑛 → R∪{+∞} be as in Definition 5. A vector 𝑠 ∈ R𝑛

is called a subgradient of 𝑓 at �̄� if 𝑓 (𝑥 ) ≥ 𝑓 ( �̄� ) + 𝑠⊤ (𝑥 − �̄� )∀𝑥 ∈ R𝑛 .
The set of vectors 𝑠 is called subdifferential of 𝑓 at �̄� and denoted by 𝜕 𝑓 ( �̄� ) .
Theorem 11 Let 𝑓 : R𝑛 → R ∪ {+∞} be a convex function that is not
identically +∞.
1. If 𝑥 ∈ int dom 𝑓 , then 𝜕 𝑓 (𝑥 ) is nonempty and bounded.
2. (Subgradient and Directional Derivative) Let 𝑓 ′ (𝑥, 𝑑) =

lim𝑡↓0
𝑓 (𝑥+𝑡𝑑)− 𝑓 (𝑥)

𝑡 be the directional derivative of 𝑓 at 𝑥 ∈ R𝑛 in
the direction 𝑑 ∈ R𝑛 \ {0}, and let 𝑥 ∈ int dom( 𝑓 ) . Then, 𝜕 𝑓 (𝑥 ) is
a non-empty compact convex set. Moreover, for any 𝑑 ∈ R𝑛 , we have
𝑓 ′ (𝑥, 𝑑) = max𝑠∈𝜕 𝑓 (𝑥) 𝑠⊤𝑑.

3. (Subdifferential of a Differentiable Function) The convex function 𝑓 is
differentiable at 𝑥 ∈ R𝑛 iff the subdifferential 𝜕 𝑓 (𝑥 ) is a singleton, in
which case it consists of the gradient of 𝑓 at 𝑥.

4. (Additivity of Subdifferentials) Suppose that 𝑓 = 𝑓1 + 𝑓2 , where
𝑓1 : R𝑛 → R∪ {+∞} and 𝑓2 : R𝑛 → R∪ {+∞} are convex functions
that are not identically+∞. Furthermore, suppose ∃𝑥0 ∈ dom( 𝑓 ) s.t. 𝑓1
is continuous at 𝑥0 . Then, we have 𝜕 𝑓 (𝑥 ) = 𝜕 𝑓1 (𝑥 ) + 𝜕 𝑓2 (𝑥 ) ∀𝑥 ∈
dom( 𝑓 ) .

Example 5 (A Convex Function with Empty Subdifferential at a Point)

𝑓 (𝑥 ) =
{
−
√︃

1 − ∥𝑥 ∥2
2 if ∥𝑥 ∥2 ≤ 1,

+∞ otherwise.
It is clear that 𝑓 is a convex func-

tion with dom( 𝑓 ) = 𝐵(0, 1) and is differentiable on int dom( 𝑓 ) = {𝑥 ∈
R𝑛 : ∥𝑥 ∥2 < 1}. It is also clear that 𝜕 𝑓 (𝑥 ) = ∅ for all 𝑥 ∉ dom( 𝑓 ) . Now,
let �̄� ∈ bd dom( 𝑓 ) = {𝑥 ∈ R𝑛 : ∥𝑥 ∥2 = 1} be arbitrary. If 𝑠 ∈ 𝜕 𝑓 ( �̄� ) ,
𝑓 (𝑥 ) = −

√︃
1 − ∥𝑥 ∥2

2 ≥ 𝑠⊤ (𝑥 − �̄� ) for all 𝑥 ∈ 𝐵(0, 1) . (9)
W.l.o.g., we may assume that �̄� = 𝑒1 . For 𝛼 ∈ [−1, 1], define
𝑥 (𝛼) = 𝛼𝑒1 ∈ 𝐵(0, 1) . From (9), we see that 𝑠 ∈ R𝑛 satisfies
𝑓 (𝑥 (𝛼) ) = −

√
1 − 𝛼2 ≥ 𝛼𝑠1 − 𝑠1 for all 𝛼 ∈ [−1, 1].

However, this implies that 𝑠1 ≥
√︁
(1 + 𝛼)/(1 − 𝛼) for all 𝛼 ∈ [−1, 1],

which is impossible. Hence, we have 𝜕 𝑓 ( �̄� ) = ∅ for all �̄� ∈ bd dom( 𝑓 ) .
Example 6 (Subdifferential of the Euclidean Norm)
𝑓 (𝑥 ) = ∥𝑥 ∥2 . Note that 𝑓 is differentiable whenever 𝑥 ≠ 0. Hence, by The-
orem 11(b) we have𝜕 𝑓 (𝑥 ) = {∇ 𝑓 (𝑥 ) } = {𝑥/∥𝑥 ∥2 } for all 𝑥 ∈ R𝑛\{0}.
Now, recall from Definition 6 that 𝑠 ∈ R𝑛 is a subgradient of 𝑓 at 0 iff
∥𝑥 ∥2 ≥ 𝑠⊤𝑥 for all 𝑥 ∈ R𝑛 . It follows that 𝜕 𝑓 (0) = 𝐵(0, 1) .



3.7 Example Problems
1. Let 𝐵∞ = {𝑥 ∈ R𝑛 : −1 ≤ 𝑥𝑖 ≤ 1 for 𝑖 = 1, ..., 𝑛}. For any

𝑥 ∈ 𝐵∞ , consider the set 𝑁 (𝑥 ) = {𝑢 ∈ R𝑛 : 𝑢⊤ (𝑦 − 𝑥 ) ≤
0 for all 𝑦 ∈ 𝐵∞ }. (a) Show that 𝑁 (𝑥 ) is a convex cone for any
𝑥 ∈ 𝐵∞ .
(b) Give an explicit description of 𝑁 (𝑥 ) .
A: (a) Let 𝑥 ∈ 𝐵∞ be fixed. For any 𝛼 > 0 and 𝑢 ∈ 𝑁 (𝑥 ) ,
𝛼𝑢⊤ (𝑦 − 𝑥 ) ≤ 0 ∀𝑦 ∈ 𝐵∞ . Hence, 𝑁 (𝑥 ) is a cone.
Moreover, for any 𝑢, 𝑣 ∈ 𝑁 (𝑥 ) and 𝛼 ∈ (0, 1) , we have (𝛼𝑢 + (1 −
𝛼)𝑣)⊤ (𝑦 − 𝑥 ) ≤ 0 for all 𝑦 ∈ 𝐵∞ . It follows that 𝑁 (𝑥 ) is convex.
(b) 𝐼0 = {𝑖 : −1 < 𝑥𝑖 < 1}, 𝐼+ = {𝑖 : 𝑥𝑖 = 1}, 𝐼− = {𝑖 : 𝑥𝑖 = −1}.

Define 𝑆 (𝑥 ) =
𝑢 ∈ R𝑛 :


𝑢𝑖 = 0 if 𝑖 ∈ 𝐼0 ,
𝑢𝑖 ≥ 0 if 𝑖 ∈ 𝐼+ ,
𝑢𝑖 ≤ 0 if 𝑖 ∈ 𝐼−

 .We claim 𝑁 (𝑥 ) =

𝑆 (𝑥 ) :
Suppose 𝑢 ∈ 𝑆 (𝑥 ) . Then, for each 𝑦 ∈ 𝐵∞ , |𝑦𝑖 | ≤ 1 for 𝑖 = 1, ..., 𝑛,
implies 𝑢⊤ (𝑦 − 𝑥 ) =

∑
𝑖∈𝐼0 𝑢𝑖 (𝑦𝑖 − 𝑥𝑖 ) +

∑
𝑖∈𝐼+ 𝑢𝑖 (𝑦𝑖 − 1) +∑

𝑖∈𝐼− 𝑢𝑖 (𝑦𝑖 + 1) ≤ 0. It follows that 𝑢 ∈ 𝑁 (𝑥 ) .
Conversely, suppose 𝑢 ∈ 𝑁 (𝑥 ) . Let 𝑖 ∈ {1, ..., 𝑛} fixed and

𝛼 ∈ [−1, 1] arbitrary. Define [𝑦 (𝑖, 𝛼) ] 𝑗 =
{
𝑥 𝑗 if 𝑗 ≠ 𝑖,
𝛼 otherwise.

Since 𝑥 ∈ 𝐵∞ , 𝑦 (𝑖, 𝛼) ∈ 𝐵∞ . This together with definition of 𝑢 yields
𝑢⊤ (𝑦 (𝑖, 𝛼) − 𝑥 ) = 𝑢𝑖 (𝛼 − 𝑥𝑖 ) ≤ 0. Since the preceding inequality
holds for any 𝛼 ∈ [−1, 1], we must have 𝑢𝑖 = 0 if 𝑖 ∈ 𝐼0 , 𝑢𝑖 ≥ 0 if
𝑖 ∈ 𝐼+ , and 𝑢𝑖 ≤ 0 if 𝑖 ∈ 𝐼− . It follows that 𝑢 ∈ 𝑆 (𝑥 ) . This completes
the proof.

2. Give explicit expression of 𝑓 ∗ , the conjugate of 𝑓 .

(a) Let 𝑓 (𝑥 ) =

{
𝑥 ln 𝑥 if 𝑥 ≥ 0,
+∞ otherwise

(note that 0 ln 0 = 0). (b)

𝑓 (𝑥 ) = |𝑥 | .
(c) Let𝐶 = {𝑥 ∈ R𝑛+ : ∥𝑥 ∥2 ≤ 1} and 𝑖𝐶 the indicator function of𝐶 .
(d) Let𝐶 ⊆ R𝑛 be a convex cone and 𝑖𝐶 be the indicator function of𝐶 .
(e) 𝑓 : R𝑛 → R by 𝑓 (𝑥 ) = 𝑐⊤𝑥 + 𝑑.
(f) 𝑓 (𝑥 ) = ∑𝑛

𝑖=1 − ln 𝑥𝑖 . (g) 𝑓 (𝑥 ) = ∑𝑛
𝑖=1 |𝑥𝑖 | .

A: (a) 𝑓 ∗ (𝑦) = sup𝑥∈R {𝑦𝑥 − 𝑓 (𝑥 ) } = sup𝑥≥0 {𝑦𝑥 − 𝑥 ln 𝑥}.
𝑥 ↦→ 𝑦𝑥 − 𝑥 ln 𝑥 is maximized at 𝑥∗ = exp(𝑦 − 1) > 0.
𝑓 ∗ (𝑦) = 𝑦 exp(𝑦 − 1) − (𝑦 − 1) exp(𝑦 − 1) = exp(𝑦 − 1) .
(b) 𝑓 ∗ (𝑦) = sup𝑥∈R {𝑦𝑥 − |𝑥 | } = sup𝑥∈R { |𝑦 | |𝑥 | − |𝑥 | }.

𝑓 ∗ (𝑦) =
{
0 if |𝑦 | ≤ 1,
+∞ otherwise.

(c) 𝑖∗
𝐶
(𝑦) = sup𝑥∈R𝑛 {𝑦⊤𝑥 − 𝑖𝐶 (𝑥 ) } = sup𝑥∈𝐶 𝑦⊤𝑥.

Now, let 𝑥 ∈ 𝐶 and 𝑦 ∈ R𝑛 be arbitrary.
𝑦⊤𝑥 =

∑
𝑖:𝑦𝑖 ≥0 𝑥𝑖 𝑦𝑖 +

∑
𝑖:𝑦𝑖<0 𝑥𝑖 𝑦𝑖 ≤ ∑

𝑖:𝑦𝑖 ≥0 𝑥𝑖 𝑦𝑖 = 𝑦
⊤𝑥′ =

𝑦⊤+ 𝑥,

where 𝑥′
𝑗
=

{
𝑥 𝑗 if 𝑦 𝑗 ≥ 0,
0 otherwise,

and (𝑦+ ) 𝑗 = max{𝑦 𝑗 , 0}, for 𝑗 =

1, ..., 𝑛.
It follows from the Cauchy-Schwarz inequality that 𝑖∗

𝐶
(𝑦) = ∥𝑦+ ∥2 .

(d) 𝑖∗
𝐶
(𝑦) = sup𝑥∈R𝑛

{
𝑦⊤𝑥 + 𝑖𝐶 (𝑥 )

}
= sup𝑥∈𝐶 𝑦⊤𝑥. Since 𝐶 is

a cone, we have 𝛼𝑥 ∈ 𝐶 for all 𝛼 > 0 whenever 𝑥 ∈ 𝐶 . It follows that

𝑖∗
𝐶
(𝑦) =

{
0 if 𝑦⊤𝑥 ≤ 0 for all 𝑥 ∈ 𝐶,
+∞ otherwise.

. (negative dual cone)

(e) By definition, we have 𝑓 ∗ (𝑦) = sup𝑥∈R𝑛 (𝑦 − 𝑐)⊤𝑥 − 𝑑. Ob-

serve sup𝑥∈R𝑛 (𝑦 − 𝑐)⊤𝑥 =

{
0 if 𝑦 = 𝑐,

+∞ otherwise.
It follows 𝑓 ∗ (𝑦) ={

−𝑑 if 𝑦 = 𝑐,

+∞ otherwise.

(f) 𝑓 ∗ (𝑦) = sup𝑥∈R𝑛+

{
𝑦⊤𝑥 + ∑𝑛

𝑖=1 ln 𝑥𝑖
}

=

sup𝑥∈R𝑛+
∑𝑛
𝑖=1 (𝑦𝑖 𝑥𝑖 + ln 𝑥𝑖 ) .

sup𝑥𝑖 ∈R+ (𝑦𝑖 𝑥𝑖 + ln 𝑥𝑖 ) =
{
−1 − ln(−𝑦𝑖 ) if 𝑦𝑖 < 0,
+∞ otherwise.

𝑓 ∗ (𝑦) =
{
−∑𝑛

𝑖=1 ln(−𝑦𝑖 ) − 𝑛 if 𝑦 ∈ R𝑛−− ,
+∞ otherwise.

(g) 𝑓 ∗ (𝑦) = 𝑖𝐵𝑦, where 𝐵 = {𝑦 ∈ R𝑛 : |𝑦𝑖 | ≤ 1 for 𝑖 = 1...𝑛}
3. Let 𝐴 ∈ R𝑚×𝑛 and 𝑏 ∈ R𝑚 be given. Consider the polyhe-

dron 𝑃 = {𝑥 ∈ R𝑛 : 𝐴𝑥 ≤ 𝑏}. For any 𝑥 ∈ 𝑃, define
𝑁 (𝑥 ) = {𝑢 ∈ R𝑛 : 𝑢⊤ (𝑦 − 𝑥 ) ≤ 0 for all 𝑦 ∈ 𝑃},
𝑄 (𝑥 ) = {𝐴⊤𝑧 ∈ R𝑛 : 𝑧⊤ (𝑏 − 𝐴𝑥 ) = 0, 𝑧 ∈ R𝑚+ }.
(a) Show that𝑄 (𝑥 ) ⊆ 𝑁 (𝑥 ) .
A: Let 𝑢 ∈ 𝑄 (𝑥 ) . Then, we have 𝑢 = 𝐴⊤𝑧 for some 𝑧 ∈ R𝑚 sat-
isfying 𝑧⊤ (𝑏 − 𝐴𝑥 ) = 0 and 𝑧 ≥ 0. Now, for each 𝑦 ∈ 𝑃, we get
𝑧⊤𝐴(𝑦−𝑥 ) ≤ 𝑧⊤ (𝑏−𝐴𝑥 ) = 0, (inequality from 𝑧 ≥ 0 and 𝐴𝑦 ≤ 𝑏).
(b) Let 𝑢 ∈ R𝑛 s.t. 𝑢 ∉ 𝑄 (𝑥 ) . Let 𝐼 (𝑥 ) = {𝑖 : 𝑎⊤

𝑖
𝑥 = 𝑏𝑖 },

where 𝑎⊤
𝑖

is the 𝑖-th row of 𝐴. Show ∃𝑤 ∈ R𝑛 \ {0} satisfying
𝑤⊤𝑎𝑖 ≤ 0 ∀𝑖 ∈ 𝐼 (𝑥 ) .
A: If 𝐼 (𝑥 ) = ∅, then every 𝑤 ∈ R𝑛 \ {0} satisfies the desired conclu-
sion. Assume 𝐼 (𝑥 ) ≠ ∅. Since𝑄 (𝑥 ) is a non-empty closed convex set,
by the separation theorem and the definition of 𝑄 (𝑥 ) , ∃𝑤 ∈ R𝑛 \ {0}
s.t.
𝜃∗ ≜ max

{
𝑤⊤𝐴⊤𝑧 : 𝑧⊤ (𝑏 − 𝐴𝑥 ) = 0, 𝑧 ∈ R𝑚+

}
< 𝑤⊤𝑢. (3) .

Since {𝑧 ∈ R𝑚 : 𝑧⊤ (𝑏 − 𝐴𝑥 ) = 0, 𝑧 ≥ 0} is a cone containing
the origin and RHS of (3) is finite, 𝜃∗ = 0. Now, for each 𝑖 ∈ 𝐼 (𝑥 ) , the
𝑖-th basis vector 𝑒𝑖 ∈ R𝑚 satisfies 𝑒⊤

𝑖
(𝑏 − 𝐴𝑥 ) = 0 and 𝑒𝑖 ≥ 0. It

follows 𝑤⊤𝐴⊤𝑒𝑖 = 𝑤⊤𝑎𝑖 ≤ 𝜃∗ for all 𝑖 ∈ 𝐼 (𝑥 ) .
(c) Show that for some 𝜖 > 0, we have 𝑥 + 𝜖 𝑤 ∈ 𝑃, where 𝑤 is the
vector found in (b). Hence, conclude that 𝑢 ∉ 𝑁 (𝑥 ) .
A: Case 1: 𝑖 ∈ 𝐼 (𝑥 ) . (b) implies 𝑎⊤

𝑖
(𝑥 + 𝜖 𝑤) ≤ 𝑏𝑖 for all 𝜖 > 0.

Case 2: 𝑖 ∉ 𝐼 (𝑥 ) . Since 𝑥 ∈ 𝑃, we have 𝑎⊤
𝑖
𝑥 < 𝑏𝑖 . If𝑤⊤𝑎𝑖 ≤ 0, we

have 𝑎⊤
𝑖
(𝑥 + 𝜖 𝑤) < 𝑏𝑖 for all 𝜖 > 0. On the other hand, upon letting

𝜖 ≜ ... > 0, we see that if 𝑤⊤𝑎𝑖 > 0, then 𝑎⊤
𝑖
(𝑥 + 𝜖 𝑤) ≤ 𝑏𝑖 for all

𝜖 ∈ (0, 𝜖 ].
Putting the above two cases together, we conclude 𝑥 + 𝜖 𝑤 ∈ 𝑃. Finally,
using (3), we have 𝑢⊤ ( (𝑥 + 𝜖 𝑤) − 𝑥 ) = 𝜖 𝑢⊤𝑤 > 0. It follows that
𝑢 ∉ 𝑁 (𝑥 ) .

4. Let 𝐾 ⊆ R𝑛 be a closed convex cone and 𝑥 ∈ R𝑛 satisfying 𝑥 ∉ 𝐾 .
Show there exists 𝑏 ∈ R𝑛 satisfying 𝑏⊤𝑤 ≤ 0 < 𝑏⊤𝑥 for all 𝑤 ∈ 𝐾 .
A: By separation theorem, ∃𝑏 : max𝑤∈𝐾 𝑏⊤𝑤 < 𝑏⊤𝑥 (∗)
Note that 0 ∈ 𝐾 . ⇒ max𝑤∈𝐾 𝑏⊤𝑤 ≥ 0. We claim
max𝑤∈𝐾 𝑏⊤𝑤 = 0.
Suppose not. Then, ∃�̄� ∈ 𝐾 s.t. 𝑏⊤�̄� > 0.
Since 𝛼�̄� ∈ 𝐾∀𝛼 > 0, then 𝛼𝑏⊤�̄� < 𝑏⊤𝑥∀𝛼 > 0.
Due to ∗. Taking 𝛼→ +∞ leads to a contradiction.

5. 23Q4. S𝑑 = {𝑋 ∈ R𝑑×𝑑 : 𝑋⊤ = 𝑋}. Let 𝜆1 (𝑋) ≥ 𝜆2 (𝑋) ≥ ... ≥
𝜆𝑑 (𝑋) denote the eigenvalues of 𝑋 ∈ S𝑑 in descending order. (a) Let

𝑘 ≤ 𝑑, show
∑𝑘
𝑖=1 𝜆𝑖 (𝑋) = sup

𝑉∈R𝑑×𝑘 Tr(𝑉⊤𝑋𝑉 ) s.t. 𝑉⊤𝑉 =

𝐼𝑘 .
(b) Show the function is convex over 𝑋 ∈ S𝑑 : 𝑓 (𝑋) = ∑𝑘

𝑖=1 𝜆𝑖 (𝑋) .
A: (a) Since 𝑋 is symmetric, exists an orthogonal matrix 𝑈 ∈ R𝑑×𝑑
such that 𝑋 = 𝑈Λ𝑈⊤ , where Λ = 𝑑𝑖𝑎𝑔 (𝜆1 , . . . , 𝜆𝑑 ) Take 𝑉
as the first 𝑘 columns of 𝑈, i.e., 𝑉 = 𝑈:,1:𝑘 . Then, we have
tr[𝑉⊤𝑋𝑉 ] =

∑𝑘
𝑖=1 𝜆𝑖 (𝑋) , which implies that

∑𝑘
𝑖=1 𝜆𝑖 (𝑋) ≤

sup
𝑉∈R𝑑×𝑘 Tr(𝑉⊤𝑋𝑉 ) s.t. 𝑉⊤𝑉 = 𝐼𝑘 . Also we have

Tr(𝑉⊤𝑋𝑉 ) = Tr(𝑉⊤𝑈Λ𝑈⊤𝑉 ) . Let 𝑊 = 𝑈⊤𝑉 ∈ R𝑑×𝑘 ,
Tr(𝑉⊤𝑋𝑉 ) = Tr(𝑊⊤Λ𝑊 ) . Let 𝑊 = [𝑤⊤

1 ; . . . ;𝑤⊤
𝑑
] Since Λ is

diagonal, Tr(𝑊⊤Λ𝑊 ) =
∑𝑑
𝑖=1 𝜆𝑖 ∥𝑤𝑖 ∥

2 . Since 𝑊⊤𝑊 = 𝐼𝑘 , we

have
∑𝑑
𝑖=1 ∥𝑤𝑖 ∥2 ≤ 𝑘 and ∥𝑤𝑖 ∥2 ≤ 1. Thus, sup

∑𝑑
𝑖=1 𝜆𝑖 ∥𝑤𝑖 ∥

2 ≤
sup

∑𝑑
𝑖=1 𝜆𝑖 .

(b) From (a) we know 𝑓 (𝑋) is the pointwise supremum of a family of
linear functions tr(𝑉⊤𝑋𝑉 ) .

6. 22Q1. 𝑓 : R𝑑 → R convex and differentiable. Suppose exists 𝐿 > 0 s.t.
0 ≤ 𝑓 (𝑥 ) − 𝑓 (𝑦) − ∇ 𝑓 (𝑦)⊤ (𝑥 − 𝑦) ≤ 𝐿

2 ∥𝑥 − 𝑦 ∥2 , ∀𝑥, 𝑦. Show:
𝑓 (𝑥 )− 𝑓 (𝑦) ≤ ∇ 𝑓 (𝑥 )⊤ (𝑥−𝑦)− 1

2𝐿 ∥∇ 𝑓 (𝑥 )−∇ 𝑓 (𝑦) ∥2 , ∀𝑥, 𝑦.
A: Set 𝑧 = 𝑦 − 1

𝐿
(∇ 𝑓 (𝑦) − ∇ 𝑓 (𝑥 ) ) ⇒ ∇ 𝑓 (𝑦) − ∇ 𝑓 (𝑥 ) =

𝐿 (𝑦 − 𝑧)(*).
𝑓 (𝑥 ) − 𝑓 (𝑦) ≤ ∇ 𝑓 (𝑥 )⊤ (𝑥 − 𝑦) − 1

2𝐿 ∥𝑦 − 𝑧 ∥2

⇔ 𝑓 (𝑥 ) − 𝑓 (𝑧) + 𝑓 (𝑧) − 𝑓 (𝑦) ≤ ∇ 𝑓 (𝑥 )⊤ (𝑥 − 𝑦) − 𝐿
2 ∥𝑦 − 𝑧 ∥2

⇔ 𝑓 (𝑥 ) − 𝑓 (𝑧) + 𝑓 (𝑧) − 𝑓 (𝑦) ≤ ∇ 𝑓 (𝑥 )⊤ (𝑥 − 𝑧) + ∇ 𝑓 (𝑥 )⊤ (𝑧 −
𝑦) − 𝐿

2 ∥𝑦 − 𝑧 ∥2

From convexity: 𝑓 (𝑥 ) − 𝑓 (𝑧) ≤ ∇ 𝑓 (𝑥 )⊤ (𝑥 − 𝑧) . (1)
From statement: 𝑓 (𝑧) − 𝑓 (𝑦) − ∇ 𝑓 (𝑦)⊤ (𝑧 − 𝑦) ≤ 𝐿

2 ∥𝑧 − 𝑦 ∥2

(∗)∇ 𝑓 (𝑦)=∇ 𝑓 (𝑥)+𝐿 (𝑦−𝑧)
⇒

𝑓 (𝑧) − 𝑓 (𝑦) ≤ ∇ 𝑓 (𝑥 )⊤ (𝑧 − 𝑦) − 𝐿
2 ∥𝑧 − 𝑦 ∥2 (2)

(1) + (2): 𝑓 (𝑥 ) − 𝑓 (𝑦) ≤ ∇ 𝑓 (𝑥 )⊤ (𝑥 − 𝑦) − 𝐿
2 ∥𝑦 − 𝑧 ∥2 (∗)

= □

7. 22Q3. Consider a function 𝑓 : R𝑑 → R. The function 𝑓 is
said to be quasi-convex if all of its sublevel sets are convex sets, i.e.,
𝑆𝛼 = {𝑥 ∈ R𝑑 : 𝑓 (𝑥 ) ≤ 𝛼} is a convex set for any 𝛼 ∈ R.
(a) Consider the function 𝑓 (𝑥 ) = 𝑎⊤𝑥+𝑏

𝑐⊤𝑥+𝑑 , where 𝑎, 𝑏, 𝑐, 𝑑 are some

fixed vectors/scalars. Let 𝑋 = {𝑥 ∈ R𝑑 : 𝑐⊤𝑥 + 𝑑 ≥ 1}. Is 𝑓 (𝑥 )
convex over 𝑋? Is 𝑓 (𝑥 ) quasi-convex over 𝑋? Justify your answer.
(b) Show that for any quasi-convex function, it holds 𝑓 (𝛼𝑥+(1−𝛼)𝑦) ≤
max{ 𝑓 (𝑥 ) , 𝑓 (𝑦) }, for any 𝑥, 𝑦 ∈ R𝑑 and 𝛼 ∈ [0, 1].
A: (a) 𝑆𝛼 =

{
𝑥 ∈ R𝑑 : 𝑎

⊤𝑥+𝑏
𝑐⊤𝑥+𝑑 ≤ 𝛼

}
= {𝑥 ∈ R𝑑 : 𝑎⊤𝑥 + 𝑏 ≤

𝛼(𝑐⊤𝑥 + 𝑑) } = {𝑥 ∈ R𝑑 : (𝑎 − 𝛼𝑐)⊤𝑥 ≤ 𝛼𝑑 − 𝑏}, which rep-
resents a halfspace (a convex set). Therefore, 𝑓 (𝑥 ) is quasi-convex over
𝑋.
(b) Assume there exists 𝑦, 𝑧 and 𝛼 ∈ [0, 1] such that
𝑓 (𝛼𝑦 + (1 − 𝛼)𝑧) > max{ 𝑓 (𝑦) , 𝑓 (𝑧) }. Consider sublevel set
𝑆max{ 𝑓 (𝑦) , 𝑓 (𝑧) } = {𝑥 ∈ R𝑑 : 𝑓 (𝑥 ) ≤ max{ 𝑓 (𝑦) , 𝑓 (𝑧) } }. Then
𝑦, 𝑧 ∈ 𝑆max{ 𝑓 (𝑦) , 𝑓 (𝑧) } , but 𝛼𝑦 + (1 − 𝛼)𝑧 ∉ 𝑆max{ 𝑓 (𝑦) , 𝑓 (𝑧) } ,
contradicts quasi-convexity of 𝑓 .

8. Geometric mean of k smallest eigenvalues.

𝑓 (𝑋) =

(∏𝑛
𝑖=𝑛−𝑘+1 𝜆𝑖 (𝑋)

)1/𝑘
is concave on 𝑆𝑛++: For 𝑋 ≻ 0,

𝑓 (𝑋) = 1
𝑘

inf{tr(𝑉⊤𝑋𝑉 ) | 𝑉 ∈ R𝑛×𝑘 , det𝑉⊤𝑉 = 1}. 𝑓 is the
pointwise infimum of a family of linear functions tr(𝑉⊤𝑋𝑉 ) .

9. Log of product of k smallest eigenvalues.∑𝑛
𝑖=𝑛−𝑘+1 log𝜆𝑖 (𝑋) is concave on 𝑆𝑛++: For 𝑋 ≻ 0,∏𝑛
𝑖=𝑛−𝑘+1 𝜆𝑖 (𝑋) = inf

{∏𝑘
𝑖=1 (𝑉

⊤𝑋𝑉 )𝑖𝑖 | 𝑉 ∈ R𝑛×𝑘 , 𝑉⊤𝑉 = 𝐼

}
.

𝑓 is pointwise infimum of a family of concave functions
log

∏
𝑖 (𝑉⊤𝑋𝑉 )𝑖𝑖 =

∑
𝑖 log(𝑉⊤𝑋𝑉 )𝑖𝑖 .

10. 𝜆𝑘1 : 𝑆𝑛 → R returns the sum of the 𝑘 largest eigenvalues of its argument.
(a) Show 𝜆𝑘1 (𝐴) = max tr(𝐴𝑋) s.t. tr(𝑋) = 𝑘 𝐼 ⪰ 𝑋 ⪰ 0.
(b) Show 𝜆𝑘1 is convex for each 𝑘 ≥ 1.
A: (a) tr(𝐴𝑋) = tr(𝑈Λ𝑈⊤𝑋) = tr(Λ𝑈⊤𝑋𝑈 ) . Since
tr(𝑋) = tr(𝑋𝑈𝑈⊤ ) = tr(𝑈⊤𝑋𝑈) and
𝑣⊤𝑋𝑣 = (𝑈⊤𝑣)⊤ (𝑈⊤𝑋𝑈 ) (𝑈⊤𝑣) for any 𝑣 ∈ R𝑛 , we see that
𝑋 ∈ 𝑈𝑘 iff 𝑈⊤𝑋𝑈 ∈ 𝑈𝑘 , where 𝑈𝑘 ≡ {𝑍 ∈ 𝑆𝑛 : tr(𝑍 ) =
𝑘, 𝐼 ⪰ 𝑍 ⪰ 0}.
The given problem is equivalent to tr(Λ𝑋) = tr(𝑋𝑈𝑈⊤ ) =
tr(𝑈⊤𝑋𝑈 ) .
Now, we claim that there exists an optimal solution to (1) that is diagonal.
To see this, observe tr(Λ𝑋) =

∑𝑛
𝑖=1 Λ𝑖𝑖𝑋𝑖𝑖 , and 𝐼 ⪰ 𝑋 ⪰ 0 implies

that 𝑋𝑖𝑖 ∈ [0, 1] for 𝑖 = 1, 2, ..., 𝑛. In particular, if 𝑋∗ is optimal, then
diagonal matrix �̄�∗ = diag(𝑋∗

11 , 𝑋
∗
22 , ..., 𝑋

∗
𝑛𝑛 ) is feasible and has the

same objective value as 𝑋∗ . This establishes the claim. Consequently,
equivalent to max

∑𝑛
𝑖=1 Λ𝑖𝑖 𝑥𝑖 s.t.

∑𝑛
𝑖=1 𝑥𝑖 = 𝑘, 0 ≤ 𝑥 ≤ 𝑒.

(b) 𝑓𝑋 : 𝑆𝑛 → R by 𝑓𝑋 (𝐴) = tr(𝐴𝑋) . 𝜆𝑘1 (𝐴) =

max𝑋∈𝑈𝑘 𝑓𝑋 (𝐴); i.e., 𝜆𝑘1 is the pointwise supremum of a collection
of linear functions.

11. Let 𝑓 : R𝑛 → R ∪ {+∞} be a convex function s.t. epi( 𝑓 ) is closed
and 𝑓 is not identically +∞. (a) Show 𝑓 = 𝑓 ∗∗ , where 𝑓 ∗∗ = ( 𝑓 ∗ )∗ is
the conjugate of 𝑓 ∗ . (b) Show for any 𝑥, 𝑦 ∈ R𝑛 , the following state-
ments are equivalent: (i) 𝑦 ∈ 𝜕 𝑓 (𝑥 ) ; (ii) 𝑓 (𝑥 ) + 𝑓 ∗ (𝑦) = 𝑥⊤𝑦; (iii)
𝑥 ∈ 𝜕 𝑓 ∗ (𝑦) .
A: (a) 𝑓 (𝑥 ) = sup(𝑦,𝑐) ∈𝑆 𝑓 {𝑦

⊤𝑥 − 𝑐}, where 𝑆 𝑓 = { (𝑦, 𝑐) ∈
R𝑛 × R : 𝑦⊤𝑥 − 𝑐 ≤ 𝑓 (𝑥 ) for all 𝑥 ∈ R𝑛 }. Moreover, 𝑆 𝑓 =

epi( 𝑓 ∗ ) . Hence, we have (𝑦, 𝑐) ∈ 𝑆 𝑓 iff 𝑓 ∗ (𝑦) ≤ 𝑐, implies
𝑓 (𝑥 ) = sup𝑦∈R𝑛 {𝑦⊤𝑥 − 𝑓 ∗ (𝑦) },.
(b) Suppose that (i) holds; i.e., 𝑦 ∈ 𝜕 𝑓 (𝑥 ) , 𝑓 (𝑧) ≥ 𝑓 (𝑥 ) + 𝑦⊤ (𝑧 − 𝑥 )
for all 𝑧 ∈ R𝑛 , 𝑦⊤𝑥 − 𝑓 (𝑥 ) ≥ 𝑦⊤𝑧 − 𝑓 (𝑧) for all 𝑧 ∈ R𝑛 . In partic-
ular, we have 𝑦⊤𝑥 − 𝑓 (𝑥 ) ≥ sup𝑧∈R𝑛 {𝑦⊤𝑧 − 𝑓 (𝑧) } = 𝑓 ∗ (𝑦) . On
the other hand, 𝑓 (𝑥 ) ≥ 𝑦⊤𝑥 − 𝑓 ∗ (𝑦) . Hence, 𝑓 (𝑥 ) + 𝑓 ∗ (𝑦) = 𝑦⊤𝑥;
i.e., (ii) holds. By reversing the argument, the converse also holds.
Next, suppose (ii) holds; i.e., 𝑓 (𝑥 ) + 𝑓 ∗ (𝑦) = 𝑦⊤𝑥. By result in (a),
𝑓 ∗∗ (𝑥 ) + 𝑓 ∗ (𝑦) = 𝑥⊤𝑦. Since 𝑓 ∗∗ (𝑥 ) ≥ 𝑧⊤𝑥 − 𝑓 ∗ (𝑧) for all
𝑧 ∈ R𝑛 , we obtain 𝑦⊤𝑥 ≥ 𝑓 ∗ (𝑦) + 𝑧⊤𝑥 − 𝑓 ∗ (𝑧) for all 𝑧 ∈ R𝑛 ,
or equivalently, 𝑓 ∗ (𝑧) ≥ 𝑓 ∗ (𝑦) + 𝑥⊤ (𝑧 − 𝑦) for all 𝑧 ∈ R𝑛 . This
shows that 𝑥 ∈ 𝜕 𝑓 ∗ (𝑦) ; i.e., (iii) holds. Again, the converse follows by
reversing.

12. 𝑆 = {𝑋 ∈ 𝑆𝑛 : 𝜆max (𝑋) ≤ 1, 𝑋 ⪰ 0} = {𝑋 ∈ 𝑆𝑛 : 𝐼 ⪰ 𝑋 ⪰ 0}
convex.
𝑆 = {𝑋 ∈ 𝑆𝑛 : rank(𝑋) ≤ 1} not convex: Let 𝑋1 = 𝑒1𝑒

⊤
1 and

𝑋2 = 𝑒2𝑒
⊤
2 .

4 Linear Programming
4.1 Basic Definitions and Properties
Definition 1 Let 𝑠 ∈ R𝑛 \ {0} and 𝑐 ∈ R be given. Then, the set of solutions
to the linear equation 𝑠⊤𝑥 = 𝑐, namely, 𝐻 = {𝑥 ∈ R𝑛 : 𝑠⊤𝑥 = 𝑐},
is called a hyperplane in R𝑛 . Associated with every hyperplane 𝐻 are the
two halfspaces 𝐻− = {𝑥 ∈ R𝑛 : 𝑠⊤𝑥 ≤ 𝑐} and 𝐻+ = {𝑥 ∈ R𝑛 :
𝑠⊤𝑥 ≥ 𝑐}. 𝑠 is a normal of 𝐻 .
𝐻 = 𝐻+ ∩ 𝐻− ; R𝑛 = 𝐻+ ∪ 𝐻− . 𝐻, 𝐻+ , 𝐻− are all closed convex sets.
Geometrically, a hyperplane is an (𝑛 − 1)-dimensional affine subspace; i.e.,
𝐻 = { �̄�} + 𝑉 where 𝑉 = {𝑥 ∈ R𝑛 : 𝑠⊤𝑥 = 0}, �̄� = 𝑐

𝑠⊤𝑠 𝑠.
Proof: Since 𝑉 is the set of vectors that are orthogonal to 𝑠, it is a linear
subspace of dimension 𝑛 − 1. Moreover, a simple calculation shows that
𝑠⊤ �̄� = 𝑐 (i.e., �̄� ∈ 𝐻) and �̄� + 𝑥 ∈ 𝐻 for any 𝑥 ∈ 𝑉 . Thus,𝐻 ⊇ { �̄�} +𝑉 .
Conversely, for any 𝑦 ∈ 𝐻 , we have 𝑥 = 𝑦 − �̄� ∈ 𝑉 , which implies that
𝐻 ⊆ { �̄�} + 𝑉 . It follows that 𝐻 = { �̄�} + 𝑉 , as desired. □
Definition 2 A polyhedron is the intersection of a finite set of halfspaces. A
bounded polyhedron is called a polytope.
In particular, a closed convex set 𝑃 is a polyhedron iff can be represented as
𝑃 = {𝑥 ∈ R𝑛 : 𝑎⊤

𝑖
𝑥 ≤ 𝑏𝑖 for 𝑖 = 1, ..., 𝑚} (1)

for some given 𝑎1 , ..., 𝑎𝑚 ∈ R𝑛 and 𝑏1 , ..., 𝑏𝑚 ∈ R.

4.2 Extremal Elements of a Polyhedron
Consider now a point �̄� ∈ 𝑃, where 𝑃 ⊆ R𝑛 is a polyhedron of the form (1).
If the index 𝑖 ∈ {1, . . . , 𝑚} is such that 𝑎⊤

𝑖
�̄� = 𝑏𝑖 , then we say that the

corresponding constraint is active or binding at �̄�.
Theorem 1 Let 𝑃 ⊆ R𝑛 be a polyhedron of the form (1), and consider a point
�̄� ∈ 𝑃. Let 𝐼 = {𝑖 : 𝑎⊤

𝑖
�̄� = 𝑏𝑖 } be the set of indices of constraints that are

active at �̄�. Then, the following are equivalent:
(a)There exist 𝑛 vectors in set {𝑎𝑖 ∈ R𝑛 : 𝑖 ∈ 𝐼 } that linearly independent.
(b)The point �̄� ∈ R𝑛 is the unique solution to the following system of linear
equations: 𝑎⊤

𝑖
𝑥 = 𝑏𝑖 for 𝑖 ∈ 𝐼.

Definition 3 Let 𝑃 ⊆ R𝑛 be a polyhedron and 𝑥 ∈ R𝑛 be arbitrary. The
vector 𝑥 is called a basic solution if there are 𝑛 linearly independent active
constraints at 𝑥. If in addition we have 𝑥 ∈ 𝑃, then we say that 𝑥 is a
basic feasible solution.
An extreme point is a point that does not lie strictly within a line segment
connecting two other points of the set.
Theorem 2 Let 𝑃 ⊆ R𝑛 be a polyhedron of the form (1) and 𝑥 ∈ 𝑃 be
arbitrary. Then, the following are equivalent:
(a) 𝑥 is an extreme point. (b) 𝑥 is a basic feasible solution.
Remark: Also use vertex to mean an extreme point/basic feasible solution.
Proof Suppose 𝑥 ∈ 𝑃 not a BFS. Let 𝐼 = {𝑖 : 𝑎⊤

𝑖
𝑥 = 𝑏𝑖 }. Then, the

family {𝑎𝑖 ∈ R𝑛 : 𝑖 ∈ 𝐼 } does not contain 𝑛 linearly independent vec-
tors. Hence, there exists a non-zero vector 𝑑 ∈ R𝑛 such that 𝑎⊤

𝑖
𝑑 = 0

for all 𝑖 ∈ 𝐼 . Now, let 𝜖 > 0 be a parameter to be determined, and set
𝑥1 = 𝑥 − 𝜖 𝑑 ∈ R𝑛 and 𝑥2 = 𝑥 + 𝜖 𝑑 ∈ R𝑛 . Clearly, for any 𝑖 ∈ 𝐼 ,
we have 𝑎⊤

𝑖
𝑥1 = 𝑎⊤

𝑖
𝑥2 = 𝑎⊤

𝑖
𝑥 = 𝑏𝑖 . Moreover, for any 𝑖 ∉ 𝐼 , we have

𝑎⊤
𝑖
𝑥 < 𝑏𝑖 because 𝑥 ∈ 𝑃. It follows that for sufficiently small 𝜖 > 0, we

have 𝑎⊤
𝑖
𝑥1 < 𝑏𝑖 and 𝑎⊤

𝑖
𝑥2 < 𝑏𝑖 for any 𝑖 ∉ 𝐼 . Hence, 𝑥1 , 𝑥2 ∈ 𝑃. Since

𝑥 = (𝑥1 + 𝑥2 )/2 and 𝑥1 ≠ 𝑥2 , we conclude that 𝑥 is not an extreme point.
Conversely, suppose that 𝑥 ∈ 𝑃 is not an extreme point. Let 𝑥1 , 𝑥2 ∈ 𝑃
be such that 𝑥1 ≠ 𝑥2 and 𝑥 = (𝑥1 + 𝑥2 )/2, and let 𝐼 = {𝑖 : 𝑎⊤

𝑖
𝑥 = 𝑏𝑖 }.

Since 𝑥1 , 𝑥2 ∈ 𝑃, we have 𝑎⊤
𝑖
𝑥1 ≤ 𝑏𝑖 and 𝑎⊤

𝑖
𝑥2 ≤ 𝑏𝑖 for 𝑖 = 1, . . . , 𝑚,

which yields 𝑎⊤
𝑖
𝑥1 = 𝑎⊤

𝑖
𝑥2 = 𝑎⊤

𝑖
𝑥 = 𝑏𝑖 for all 𝑖 ∈ 𝐼 . This implies that

the system of linear equations 𝑎⊤
𝑖
𝑧 = 𝑏𝑖 for 𝑖 ∈ 𝐼 has more than one solution

in 𝑧 ∈ R𝑛 . Hence, by Theorem 1, 𝑥 is not a basic feasible solution. □
Example 1 (Non-Polyhedrality of the Euclidean Ball)
Proof: Consider the 𝐵(0, 1) ⊂ R𝑛 , which is a closed convex set. Suppose
𝐵(0, 1) is a polyhedron. Then, it admits a representation of the form (1).
Observe that the maximum number of basic feasible solutions in such a rep-
resentation is

(𝑚
𝑛

)
, which is finite. By Theorem 2, this is also the maximum

number of extreme points of 𝐵(0, 1) . However, this contradicts the result that
the number of extreme points of 𝐵(0, 1) is infinite. Thus, we conclude that
𝐵(0, 1) is non-polyhedral. It is worth noting that𝐵(0, 1) can be written as the
infinite intersection of halfspaces

⋂
𝑑∈R𝑛,∥𝑑∥2=1 {𝑥 ∈ R𝑛 : 𝑑⊤𝑥 ≤ 1}.

Definition 4 A polyhedron 𝑃 ⊆ R𝑛 contains a line if there exists a point
𝑥 ∈ 𝑃 and a vector 𝑑 ∈ R𝑛 \ {0} such that 𝑥 + 𝛼𝑑 ∈ 𝑃 for all 𝛼 ∈ R.
Theorem 3 Let 𝑃 ⊆ R𝑛 be a non-empty polyhedron of the form (1). Then,
the following are equivalent: (a) 𝑃 has at least one vertex. (b)𝑃 does not
contain a line. (c) There exist 𝑛 linearly independent vectors in {𝑎𝑖 }𝑚𝑖=1 .

4.3 Existence of Optimal Solutions to Linear Programs
Now, let 𝑃 ⊆ R𝑛 be a non-empty polyhedron of the form (1) and ℎ ∈ R𝑛 be
a given vector. Consider the LP min𝑥∈𝑃 ℎ⊤𝑥. (*)
Theorem 4 Consider the LP (*). Suppose that 𝑃 has at least one vertex. Then,
either the optimal value is −∞, or there exists a vertex that is optimal.
Proof Before we proceed, let us introduce a definition. We say that 𝑥 ∈ 𝑃
has rank 𝑘 ≥ 0 if there are exactly 𝑘 linearly independent active constraints at
𝑥. Now, suppose that the optimal value is finite. Consider an 𝑥 ∈ 𝑃 of rank
𝑘 < 𝑛. Our goal is to show that there exists some 𝑦 ∈ 𝑃 of greater rank and
satisfies ℎ⊤𝑦 ≤ ℎ⊤𝑥. We can then repeat until reach an optimal vertex.
As usual, let 𝐼 = {𝑖 : 𝑎⊤

𝑖
𝑥 = 𝑏𝑖 }. Since there are only 𝑘 < 𝑛 linearly inde-

pendent vectors in the family {𝑎𝑖 ∈ R𝑛 : 𝑖 ∈ 𝐼 }, there exists a 𝑑 ∈ R𝑛\{0}
such that 𝑎⊤

𝑖
𝑑 = 0 for all 𝑖 ∈ 𝐼 . W.l.o.g, assume ℎ⊤𝑑 ≤ 0.

Case 1: ℎ⊤𝑑 < 0. Consider the half-line L+ = {𝑥+𝛼𝑑 : 𝛼 > 0}. Clearly,
for any 𝑦 ∈ L+ and 𝑖 ∈ 𝐼 , we have 𝑎⊤

𝑖
𝑦 = 𝑏𝑖 . Now, if L+ ⊆ 𝑃, then the

optimal value would be −∞, which we have assumed not to be the case. Hence,
there exist a scalar �̄� > 0 and an index 𝑗 ∉ 𝐼 such that 𝑎⊤

𝑗
(𝑥 + �̄�𝑑) = 𝑏 𝑗 .

Let 𝑦 = 𝑥 + �̄�𝑑. Then, we have ℎ⊤𝑦 < ℎ⊤𝑥. Moreover, following the argu-
ment in the proof of Theorem 3, we see that the family {𝑎𝑖 : 𝑖 ∈ 𝐼 } ∪ {𝑎 𝑗 }
is linearly independent, which implies that 𝑦 ∈ 𝑃 has rank at least 𝑘 + 1.
Case 2: ℎ⊤𝑑 = 0. Consider the line L = {𝑥 + 𝛼𝑑 : 𝛼 ∈ R}. Since 𝑃
does not contain a line, there exists a scalar �̄� ≠ 0 and an index 𝑗 ∉ 𝐼 such
that 𝑎⊤

𝑗
(𝑥 + �̄�𝑑) = 𝑏 𝑗 . Let 𝑦 = 𝑥 + �̄�𝑑. Then, we have ℎ⊤𝑦 = ℎ⊤𝑥, and

the rank of 𝑦 ∈ 𝑃 is at least 𝑘 + 1.
In either case, we obtain a 𝑦 ∈ 𝑃 whose rank is greater than that of 𝑥 ∈ 𝑃 and
satisfies ℎ⊤𝑦 ≤ ℎ⊤𝑥. By repeating the above process, we will end up with a
𝑧 ∈ 𝑃 whose rank is 𝑛 (i.e., 𝑧 is a vertex of 𝑃) and satisfies ℎ⊤𝑧 ≤ ℎ⊤𝑥.
To complete the proof of the theorem, let 𝑧1 , . . . , 𝑧𝑟 be the vertices of 𝑃
and set 𝑖∗ = arg min1≤𝑖≤𝑟 ℎ⊤𝑧𝑖 . Our argument above shows that for every
𝑥 ∈ 𝑃, there exists an 𝑖 ∈ {1, . . . , 𝑟 } such that ℎ⊤𝑧𝑖 ≤ ℎ⊤𝑥. It follows
that ℎ⊤𝑧𝑖∗ ≤ ℎ⊤𝑥 for all 𝑥 ∈ 𝑃; i.e., 𝑧𝑖∗ ∈ 𝑃 is an optimal vertex. □
Consider the polyhedron 𝑃′ = { (𝑥+ , 𝑥− , 𝑠) ∈ R𝑛 × R𝑛 × R𝑚 :
𝑎⊤
𝑖
(𝑥+ − 𝑥− ) + 𝑠𝑖 = 𝑏𝑖 for 𝑖 = 1, . . . , 𝑚; 𝑥+ , 𝑥− , 𝑠 ≥ 0}. Note if

𝑥 ∈ 𝑃, then setting 𝑥+
𝑖
=

{
𝑥𝑖 if 𝑥𝑖 ≥ 0,
0 otherwise,

𝑥−
𝑖

=

{
0 if 𝑥𝑖 ≥ 0,
−𝑥𝑖 otherwise,



𝑠 𝑗 = 𝑏 𝑗 − 𝑎⊤𝑗 𝑥 for 𝑗 = 1, . . . , 𝑚, we see that (𝑥+ , 𝑥− , 𝑠) ∈ 𝑃′ .
Conversely, if (𝑥+ , 𝑥− , 𝑠) ∈ 𝑃′ , then by setting 𝑥 = 𝑥+ − 𝑥− , we have
min𝑥∈𝑃 ℎ⊤𝑥 = min(𝑥+ ,𝑥− ,𝑠) ∈𝑃′ ℎ

⊤ (𝑥+ − 𝑥− ); i.e., minimizing ℎ⊤𝑥
over 𝑃 is equivalent to minimizing ℎ⊤ (𝑥+ − 𝑥− ) over 𝑃′ . Furthermore,
note that the polyhedron 𝑃′ does not contain a line, and thus by Theorem 3,
𝑃′ has at least one vertex.
Corollary 1 Consider the LP (*). Suppose that 𝑃 is non-empty. Then, either
the optimal value is −∞, or there exists an optimal solution.
Eg inf𝑥≥1 𝑥

−1 shows nonlinear optimization need not have such a property.
To simplify, let 𝑦 = (𝑥+ , 𝑥− , 𝑠) ∈ R𝑛 × R𝑛 × R𝑚 � R2𝑛+𝑚 . Define

𝐴 =


𝑎⊤1 −𝑎⊤1 1 0 · · · 0
𝑎⊤2 −𝑎⊤2 0 1 · · · 0
.
.
.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

𝑎⊤𝑚 −𝑎⊤𝑚 0 0 · · · 1


∈ R𝑚×(2𝑛+𝑚) ,

𝑏 = (𝑏1 , . . . , 𝑏𝑚 ) ∈ R𝑚 , 𝑐 = (ℎ, −ℎ, 0) ∈ R2𝑛+𝑚 .
Then, the problem of minimizing ℎ⊤ (𝑥+ − 𝑥− ) over 𝑃′ can be written as

minimize 𝑐⊤𝑦 subject to 𝐴𝑦 = 𝑏, 𝑦 ≥ 0. (3)
We shall call an LP problem of the form (3) a standard form problem.
Example 2 (Conversion to Standard Form LP)
Let 𝑃 = {𝑥 ∈ R2 : 𝑒⊤1 𝑥 ≥ 1} ⊂ R2 and ℎ = 𝑒1 ∈ R2 in the LP (*). It is
clear that (1, 𝑥2 ) is an optimal solution for any 𝑥2 ∈ R. The polyhedron 𝑃′ is
given by 𝑃′ = { (𝑥+1 , 𝑥

+
2 , 𝑥

−
1 , 𝑥

−
2 , 𝑠) ∈ R5

+ : 𝑥+1 − 𝑥−1 −𝑠 = 1} ⊂ R5 and
the LP (*) is equivalent to min(𝑥+1 ,𝑥

+
2 ,𝑥

−
1 ,𝑥

−
2 ,𝑠) ∈𝑃

′ 𝑥+1 − 𝑥−1 . Since 𝑃′

has at least one vertex, by Theorem 4, the LP (4) has a vertex optimal solution.
This is given by 𝑦∗ = (1, 0, 0, 0, 0) . To verify 𝑦∗ is a vertex of 𝑃′ , it suffices
to verify the five active constraints 𝑥+1 = 1, 𝑥+2 = 0, 𝑥−1 = 0, 𝑥−2 = 0, 𝑠 = 0
are linearly independent; see Theorem 2.

4.4 Theorems of Alternatives
Theorem 5 (Farkas’ Lemma) Let 𝐴 ∈ R𝑚×𝑛 and 𝑏 ∈ R𝑚 be given. Then,
exactly one of the following systems has a solution:

𝐴𝑥 = 𝑏, 𝑥 ≥ 0. (5) 𝐴⊤𝑦 ≤ 0, 𝑏⊤𝑦 > 0. (6)

Corollary 2 (Gordan’s Theorem) Let 𝐴 ∈ R𝑚×𝑛 be given. Then, exactly
one of the following systems has a solution:

𝐴𝑥 > 0. (8) 𝐴⊤𝑦 = 0, 𝑦 ≥ 0, 𝑦 ≠ 0. (9)
Proof (S1) (8) and (9) cannot both have solutions, otherwise there would exist
�̄� ∈ R𝑛 and �̄� ∈ R𝑚 s.t. 0 = ( �̄�⊤𝐴) �̄� = �̄�⊤ (𝐴𝑥 ) > 0, contradiction.
(S2) Now, note that (8) is equivalent to 𝐴𝑥 ≥ 𝑒, since we can scale both sides of
(8) by any positive scalar. On the other hand, the system 𝐴𝑥 ≥ 𝑒 is equivalent
to the system �̃�𝑧 = 𝑒, 𝑧 ≥ 0, where �̃� = [𝐴 − 𝐴 − 𝐼 ] ∈ R𝑚×(2𝑛+𝑚)

and 𝑧 = (𝑥+ , 𝑥− , 𝑠) ∈ R2𝑛+𝑚
+ . Now, by Farkas’ lemma, if the system

�̃�𝑧 = 𝑒, 𝑧 ≥ 0 has no solution, then there exists a 𝑦 ∈ R𝑚 such that
�̃�⊤𝑦 ≤ 0 and 𝑒⊤𝑦 > 0. From definition of �̃�, we see 𝐴⊤𝑦 = 0 and 𝑦 ≥ 0.
Moreover, since 𝑒⊤𝑦 > 0, we conclude 𝑦 ≠ 0. This completes the proof. □
Lemma in 21Q4: (I) 𝐴𝑥 > 0, 𝑥 ≥ 0. (II) 𝑦⊤𝐴 ≤ 0, 𝑦 ≥ 0, 𝑦 ≠ 0.
Lemma in 23Q5: (I)𝑈𝑥 = 𝑣, 𝑥 ≥ 0. (II) 𝑦⊤𝑈 ≥ 0, 𝑦⊤𝑣 < 0.
A list of equivalence tricks:
1. (Cor 2) 𝐴𝑥 > 0 ⇐⇒ 𝐴𝑥 ≥ 𝑒 ⇐⇒ [𝐴 − 𝐴 − 𝐼 ]𝑧 = 𝑒, 𝑧 ≥ 0;
2. (Cor 2) 𝑒⊤𝑦 > 0 ⇐⇒ 𝑦 ≠ 0;
3. (Thm 7, HW 1b) “>” or “<”: Homogenize by switching 𝑥 to 𝑥/𝑡 , 𝑡 ≥ 0;
4. (Thm 7, HW 1b, 17Q1) 𝐴𝑥 = 𝑏𝑡 ⇔ 𝐴𝑥 − 𝑏𝑡 ≥ 0, −𝐴𝑥 + 𝑏𝑡 ≥ 0 to
match (II); or 𝐴𝑥 ≤ 𝑏⇔ (𝐴, −𝐼 ) (𝑥, 𝑠)⊤ = 𝑏, (𝑥, 𝑠) ≥ 0 to match (I).
5. (HW 1a) 𝐴𝑥 ≤ 0, 𝐴𝑥 ≠ 0 ⇐⇒ 𝐴𝑥 ≤ 0, 𝑒⊤𝐴𝑥 = −1.

4.5 LP Duality Theory
𝑣∗𝑝 = min 𝑐⊤𝑥 subject to 𝐴𝑥 = 𝑏, 𝑥 ≥ 0. (P)

Suppose that we can find a vector 𝑦 ∈ R𝑚 such that 𝐴⊤𝑦 ≤ 𝑐. Then, for any
𝑥 ∈ R𝑛 that is feasible for (P), we have 𝑏⊤𝑦 = 𝑥⊤𝐴⊤𝑦 ≤ 𝑐⊤𝑥, where the
equality is due to 𝐴𝑥 = 𝑏 and the inequality is due to 𝑥 ≥ 0 and 𝐴⊤𝑦 ≤ 𝑐.
Since the above inequality holds for any feasible solution 𝑥 ∈ R𝑛 to (P), it
follows that 𝑏⊤𝑦 provides a lower bound on 𝑣∗𝑝 for any 𝑦 ∈ R𝑚 satisfying
𝐴⊤𝑦 ≤ 𝑐. Naturally, we are interested in finding the largest lower bound on
𝑣∗𝑝 . This motivates us to consider the following optimization problem:

𝑣∗
𝑑
= max 𝑏⊤𝑦 subject to 𝐴⊤𝑦 ≤ 𝑐. (D)

Note that (D) is also an LP. In the sequel we shall call (P) the primal problem
and (D) its dual problem. Our discussion above leads to the following result:
Theorem 6 (LP Weak Duality) Let �̄� ∈ R𝑛 be feasible for (P) and �̄� ∈ R𝑚

be feasible for (D). Then, we have 𝑏⊤ �̄� ≤ 𝑐⊤ �̄�. In particular, 𝑣∗𝑝 ≥ 𝑣∗
𝑑

.
Corollary 3 The following hold:

(a) If the optimal value of (P) is −∞, then (D) must be infeasible.
(b) If the optimal value of (D) is +∞, then (P) must be infeasible.
(c) Let �̄� ∈ R𝑛 and �̄� ∈ R𝑚 be feasible for (P) and (D), respectively. Sup-

pose that the duality gap Δ( �̄�, �̄�) = 𝑐⊤ �̄� − 𝑏⊤ �̄� = 0. Then, �̄� and �̄�
are optimal solutions to (P) and (D), respectively.

Note: It’s possible for both (P) and (D) to be infeasible.
Theorem 7 (LP Strong Duality) Suppose (P) has an optimal solution
𝑥∗ ∈ R𝑛 . Then, (D) also has an optimal solution 𝑦∗ ∈ R𝑚 , 𝑐⊤𝑥∗ = 𝑏⊤𝑦∗ .
Proof: (S1) Suppose (P) has an optimal solution 𝑥∗ ∈ R𝑛 . Then, the system

𝐴𝑥 = 𝑏, 𝑥 ≥ 0, 𝑐⊤𝑥 < 𝑐⊤𝑥∗ (10)
does not have a solution in 𝑥 ∈ R𝑛 .
(SH) To apply Farkas’ lemma, we first homogenize the above system to get

𝐴𝑥 − 𝑏𝑡 = 0, 𝑐⊤𝑥 − (𝑐⊤𝑥∗ )𝑡 = −1 < 0, (𝑥, 𝑡 ) ≥ 0. (11)
We claim that (11) has no solution in (𝑥, 𝑡 ) ∈ R𝑛 × R. Indeed,
(i) if (𝑥′ , 𝑡′ ) is a feasible solution to (11) with 𝑡′ > 0, then 𝑥′/𝑡′ is a solution
to (10), which is a contradiction.
(ii) if 𝑡′ = 0, then we have 𝐴(𝑥∗ + 𝑥′ ) = 𝑏, 𝑥∗ + 𝑥′ ≥ 0, 𝑐⊤ (𝑥∗ + 𝑥′ ) =
𝑐⊤𝑥∗ − 1 < 𝑐⊤𝑥∗ . This shows 𝑥∗ + 𝑥′ is a solution to (10), which again is
a contradiction. Thus, the claim is established.
(S2) By Farkas’ lemma: 𝑄𝑤 = ℎ, 𝑤 ≥ 0. 𝑄⊤𝑧 ≤ 0, ℎ⊤𝑧 > 0.

Corollary 4 Suppose that both (P) and (D) are feasible. Then, both (P) and
(D) have optimal solutions, and their respective optimal values are equal.
The task of finding optimal solutions to (P) and (D) is equivalent to finding a
feasible solution to the following linear system in (𝑥, 𝑦) ∈ R𝑛 × R𝑚:
𝐴𝑥 = 𝑏, 𝑥 ≥ 0, (primal feasibility)
𝐴⊤𝑦 ≤ 𝑐, (dual feasibility)
𝑐⊤𝑥 = 𝑏⊤𝑦. (zero duality gap),
the problem of linear optimization is no harder than that of linear feasibility.
Theorem 8 (Complementary Slackness) Let �̄� ∈ R𝑛 and �̄� ∈ R𝑚 be fea-
sible for (P) and (D), respectively. Then, the vectors �̄� and �̄� are optimal for
their respective problems iff �̄�𝑖 (𝑐 − 𝐴⊤ �̄�)𝑖 = 0 for 𝑖 = 1, . . . , 𝑛.
Proof Using the fact that 𝐴�̄� = 𝑏, we have (12)
𝑐⊤ �̄� − 𝑏⊤ �̄� = 𝑐⊤ �̄� − �̄�⊤𝐴⊤ �̄� = �̄�⊤ (𝑐 − 𝐴⊤ �̄�) = ∑𝑛

𝑖=1 �̄�𝑖 (𝑐 − 𝐴
⊤ �̄�)𝑖 .

Now, if �̄�𝑖 (𝑐− 𝐴⊤ �̄�)𝑖 = 0 for 𝑖 = 1, . . . , 𝑛, then we have 𝑐⊤ �̄� = 𝑏⊤ �̄�. By
the LP strong duality theorem, we conclude that �̄� and �̄� are optimal for their
respective problems. Conversely, if �̄� and �̄� are optimal for their respective
problems, then by the LP strong duality theorem, we have 𝑐⊤ �̄� − 𝑏⊤ �̄� = 0.
Since �̄� ≥ 0 and 𝑐 − 𝐴⊤ �̄� ≥ 0 by the feasibility of �̄� and �̄�, we conclude by
(12) that �̄�𝑖 (𝑐 − 𝐴⊤ �̄�)𝑖 = 0 for 𝑖 = 1, . . . , 𝑛. □
From Theorem 8, we see that another way of solving (P) and (D) is to solve
the following (nonlinear) system in (𝑥, 𝑦, 𝑠) ∈ R𝑛 × R𝑚 × R𝑛 :
𝐴𝑥 = 𝑏, 𝑥 ≥ 0, (primal feasibility)
𝐴⊤𝑦 + 𝑠 = 𝑐, (dual feasibility)
𝑥𝑖𝑠𝑖 = 0 for 𝑖 = 1, . . . , 𝑛. (complementarity)
Example 3 (A Simple LP) Consider the following LP:

minimize 𝑥1 + 2𝑥2 + 𝑥3 subject to 𝑥1 − 2𝑥2 + 𝑥3 ≥ 2,
− 𝑥1 + 𝑥3 ≥ 4,

2𝑥1 + 𝑥3 ≥ 6,
𝑥1 + 𝑥2 + 𝑥3 ≥ 2,
𝑥 ≥ 0.

To derive the dual, we put it into standard form:
minimize (1, 2, 1, 0, 0, 0, 0)⊤ (𝑥1 , 𝑥2 , 𝑥3 , 𝑠1 , 𝑠2 , 𝑠3 , 𝑠4 )

subject to


1 −2 1
−1 0 1
2 0 1
1 1 1

−𝐼


𝑥1
𝑥2
𝑥3
𝑠

 =


2
4
6
2


(𝑥, 𝑠) ≥ 0.

Dual:
maximize (2, 4, 6, 2)⊤ (𝑦1 , 𝑦2 , 𝑦3 , 𝑦4 )

subject to


1 −1 2 1
−2 0 0 1
1 1 1 1

−𝐼



𝑦1
𝑦2
𝑦3
𝑦4

 ≤

1
2
1
0

 .
Now, point ( �̄�, 𝑠) = ( �̄�1 , �̄�2 , �̄�3 , 𝑠1 , 𝑠2 , 𝑠3 , 𝑠4 ) =

(
2
3 , 0,

14
3 , 0, 0,

10
3

)
,

feasible for Primal. By Theorem 8, the point ( �̄�, 𝑠) is optimal for Primal iff
there exists a feasible solution �̄� ∈ R4 to Dual such that
�̄�1 = �̄�4 = 0, (since 𝑠1 , 𝑠4 > 0) − �̄�2 + 2�̄�3 = 1 (since �̄�1 > 0)
�̄�2 + �̄�3 = 1, (since �̄�3 > 0) �̄�2 , �̄�3 ≥ 0, (dual feasibility)
or equivalently, point �̄� =

(
0, 1

3 ,
2
3 , 0

)
is feasible for Dual (easily verified).

Hence, we certified the optimality of primal-dual pair of solutions ( �̄�, 𝑠, �̄�) .
Note we also have (1, 2, 1, 0, 0, 0, 0)⊤ ( �̄�1 , �̄�2 , �̄�3 , 𝑠1 , 𝑠2 , 𝑠3 , 𝑠4 )
= 16

3 = (2, 4, 6, 2)⊤ ( �̄�1 , �̄�2 , �̄�3 , �̄�4 ); i.e., the duality gap is zero.
By Theorems 4 and 6, we know that Problem (13) has a vertex opti-
mal solution. Recall from Definition 3 that each vertex of the feasi-
ble region of Problem should have three linearly independent active con-
straints. (−1, 0, 1)⊤ ( �̄�1 , �̄�2 , �̄�3 ) = 4, (2, 0, 1)⊤ ( �̄�1 , �̄�2 , �̄�3 ) = 6,
(0, 1, 0)⊤ ( �̄�1 , �̄�2 , �̄�3 ) = 0, are linearly independent (they correspond to
the coefficient vectors (−1, 0, 1) , (2, 0, 1) , (0, 1, 0)), we conclude that �̄�
is a vertex optimal solution to Problem.

4.6 Conclusion on Optimality Conditions
min 𝑐⊤𝑥
s.t. 𝐴𝑥 = 𝑏,

𝑥 ≥ 0,
(P)

max 𝑏⊤𝑦
s.t. 𝐴⊤𝑦 + 𝑠 = 𝑐,

𝑠 ≥ 0,
(D)

where 𝐴 ∈ R𝑚×𝑛 , 𝑏 ∈ R𝑚 , and 𝑐 ∈ R𝑛 are given. The solutions 𝑥∗
and (𝑦∗ , 𝑠∗ ) are optimal for (𝑃) and (𝐷) , respectively, iff they satisfy the
following optimality conditions:
𝑥∗
𝑖
𝑠∗
𝑖
= 0 for 𝑖 = 1, . . . , 𝑛, (complementarity)

𝐴𝑥∗ = 𝑏, 𝑥∗ ≥ 0, (primal feasibility)
𝐴⊤𝑦∗ + 𝑠∗ = 𝑐, 𝑠∗ ≥ 0. (dual feasibility)

4.7 An Approximation Algorithm for Vertex Cover
Consider a simple undirected graph𝐺 = (𝑉, 𝐸 ) , where each vertex 𝑣𝑖 ∈ 𝑉
has an associated cost 𝑐𝑖 ∈ R+ . A vertex cover of𝐺 is a subset 𝑆 ⊂ 𝑉 such
that for every edge (𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝐸, at least one of the endpoints belongs to 𝑆.
We are interested in finding a vertex cover 𝑆 of𝐺 of minimal cost.
Now, let 𝑥𝑖 ∈ {0, 1} be a binary variable indicating whether 𝑣𝑖 belongs to
the vertex cover 𝑆 or not (i.e., 𝑥𝑖 = 1 iff 𝑣𝑖 ∈ 𝑆). Then, the minimum–cost
vertex cover problem can be formulated as the following integer program:

𝑣∗ = min 𝑐⊤𝑥 =
∑︁
𝑖∈𝑉

𝑐𝑖 𝑥𝑖 s.t. 𝑥𝑖 + 𝑥 𝑗 ≥ 1 for (𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝐸,

𝑥 ∈ {0, 1} |𝑉 | .
Using the fact that 𝑐 ≥ 0, it is not hard to show that the resulting problem is
equivalent to the following LP, which is called an LP relaxation of Problem:

𝑣∗𝑟 = min 𝑐⊤𝑥 s.t. 𝑥𝑖 + 𝑥 𝑗 ≥ 1 for (𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝐸,
𝑥 ≥ 0.

Clearly, we have 𝑣∗𝑟 ≤ 𝑣∗ . Suppose that 𝑥′ is an optimal solution to Problem
(7). It is then natural to ask whether we can convert 𝑥′ into a solution 𝑥′′ that
is feasible for Problem (6) and satisfies 𝑐⊤𝑥′′ ≤ 𝛼𝑣∗𝑟 for some 𝛼 > 0. The
key to proving this is the following theorem:
Theorem 3 Let 𝑃 ⊆ R|𝑉 | be the polyhedron defined by the following system:{
𝑥𝑖 + 𝑥 𝑗 ≥ 1 for (𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝐸,
𝑥 ≥ 0. Suppose that 𝑥 is an extreme point of

𝑃. Then, we have 𝑥𝑖 ∈ {0, 1/2, 1} for 𝑖 = 1, . . . , |𝑉 | .

Proof Let 𝑥 ∈ 𝑃 and consider the sets
𝑈−1 = {𝑖 ∈ {1, . . . , |𝑉 | } : 𝑥𝑖 ∈ (0, 1/2) };
𝑈1 = {𝑖 ∈ {1, . . . , |𝑉 | } : 𝑥𝑖 ∈ (1/2, 1) }.
For 𝑖 = 1, . . . , |𝑉 | and 𝑘 ∈ {−1, 1}, define

𝑦𝑖 =

{
𝑥𝑖 + 𝑘𝜖 if 𝑖 ∈ 𝑈𝑘 ,
𝑥𝑖 otherwise

, 𝑧𝑖 =

{
𝑥𝑖 − 𝑘𝜖 if 𝑖 ∈ 𝑈𝑘 ,
𝑥𝑖 otherwise.

By definition, we have 𝑥 = (𝑦 + 𝑧)/2. If either𝑈−1 or𝑈1 is non–empty,
then we may choose 𝜖 ↓ 0 so that 𝑦, 𝑧 ∈ 𝑃, and that 𝑥, 𝑦, 𝑧 are all distinct.
It follows that𝑈𝑘 = ∅ for 𝑘 ∈ {−1, 1} if 𝑥 is an extreme point of 𝑃. □
Corollary 1 There exists a 2–approximation algorithm for the minimum–cost
vertex cover problem.
Proof We first solve the LP and obtain an optimal extreme point solution 𝑥′ .
Now, by Theorem 3, all entries of 𝑥′ belong to {0, 1/2, 1}. Hence, the vector

𝑥′′ defined by 𝑥′′
𝑖

=

{
𝑥′
𝑖

if 𝑥′
𝑖
= 0 or 1,

1 if 𝑥′
𝑖
= 1/2 for 𝑖 = 1, . . . , |𝑉 | is feasible

for Problem. Moreover, objective value 𝑐⊤𝑥′′ ≤ 2𝑐⊤𝑥′ = 2𝑣∗𝑟 ≤ 2𝑣∗ . □

4.8 Example Problems
1. 1. Farkas Lemma:

(a) (I) 𝐴𝑥 ≤ 0, 𝐴𝑥 ≠ 0, 𝑥 ≥ 0. (II) 𝐴⊤𝑦 ≥ 0, 𝑦 > 0.
A: (S1) The systems (I) and (II) cannot be simultaneously solvable. In-
deed, suppose that �̄� ∈ R𝑛 solves (I) and �̄� ∈ R𝑚 solves (II). Then,
since �̄� > 0, 𝐴�̄� ≤ 0 and 𝐴�̄� ≠ 0, we have �̄�⊤𝐴�̄� < 0. On the other
hand, since �̄� ≥ 0 and 𝐴⊤ �̄� ≥ 0, we have �̄�⊤𝐴�̄� ≥ 0. This results in a
contradiction.
(S2) Suppose (I) is not solvable. Then, by a simple scaling argument, we
see
(I’)𝐴𝑥 ≤ 0, 𝑒⊤𝐴𝑥 = −1, 𝑥 ≥ 0 is not solvable either. (I’) equivalent
to [

𝐴 𝐼

𝑒⊤𝐴 0⊤

] [
𝑥
𝑠

]
=

[
0⊤
−1

]
, (𝑥, 𝑠) ≥ 0.

By Farkas’, ∃ �̄� = (�̄�, 𝑡 ) ∈ R𝑚+1 s.t.
[
𝐴⊤ 𝐴⊤𝑒
𝐼 0

] [
�̄�
𝑡

]
≥ 0, 𝑡 > 0,

or equivalently, 𝐴⊤ (�̄�+ 𝑡𝑒) ≥ 0, �̄� ≥ 0, 𝑡 > 0. Now, let �̄� = �̄�+ 𝑡𝑒 ∈
R𝑚 . Clearly, we have 𝐴⊤ �̄� ≥ 0. Moreover, since �̄� ≥ 0 and 𝑡 > 0, we
have �̄� ≥ 𝑡𝑒 > 0. It follows that (II) is solvable, as desired.
(b) 𝐴 ∈ R𝑚×𝑛 , 𝑏 ∈ R𝑚 , 𝑐 ∈ R𝑛 , 𝑑 ∈ R. ∃ �̄� ∈ R𝑛 satisfying
𝐴�̄� ≤ 𝑏.
(I) 𝐴𝑥 ≤ 𝑏, 𝑐⊤𝑥 > 𝑑. (II) 𝐴⊤𝑦 = 𝑐, 𝑏⊤𝑦 ≤ 𝑑, 𝑦 ≥ 0.
A: (S1) The systems (I) and (II) cannot be simultaneously solvable. If
�̄� ∈ R𝑛 solves (I) and �̄� ∈ R𝑚 solves (II), then 𝑑 < 𝑐⊤ �̄� = �̄�⊤𝐴�̄� ≤
𝑏⊤ �̄� ≤ 𝑑, which is a contradiction.
(SH) We claim that (I) is solvable iff (I’) 𝐴𝑥 − 𝑏𝑡 ≤ 0, 𝑐⊤𝑥 − 𝑑𝑡 >
0, 𝑡 ≥ 0 is solvable. Indeed, if 𝑥′ solves (I), then (𝑥′ , 1) solves (I’).
Conversely, suppose that (𝑥′ , 𝑡′ ) solves (I’).
(i) If 𝑡′ > 0, then it is easy to verify that 𝑥′/𝑡′ solves (I).
(ii) If 𝑡′ = 0, then 𝐴𝑥′ ≤ 0 and 𝑐⊤𝑥′ > 0. Since 𝐴�̄� ≤ 𝑏 by
assumption, letting 𝑥′′ = �̄� + 𝜃𝑥′ with 𝜃 ↑ ∞, we have 𝑐⊤𝑥′′ =
𝑐⊤ �̄� + 𝜃𝑐⊤𝑥′ > 𝑑 and 𝐴𝑥′′ = 𝐴( �̄� + 𝜃𝑥′ ) ≤ 𝑏. It follows that 𝑥′′
solves (I).
(S2) Now, note that (I’) takes the form

(I”)
[
𝐴 −𝑏
0 −1

] [
𝑥
𝑡

]
≤ 0,

[
𝑐⊤ −𝑑

] [
𝑥
𝑡

]
> 0.

Suppose that (I”) is not solvable. By Farkas’ lemma, we see that

(II’)
[
𝐴⊤ 0
−𝑏⊤ −1

] [
𝑦
𝑠

]
=

[
𝑐
−𝑑

]
, 𝑦 ≥ 0, 𝑠 ≥ 0 is solvable.

This implies that (II) is solvable, as can be easily verified.
2. Construct a primal-dual pair of linear programs such that both the primal

and the dual have a unique optimal solution.
A: There are many possible constructions. For instance, consider the
following primal-dual pair of standard-form LP:

(P) minimize 𝑥1

subject to

𝑥1 + 𝑥2 = 1,
𝑥1 − 𝑥2 = 0,
𝑥1 , 𝑥2 ≥ 0.

(D) maximize 𝑦1

subject to
{
𝑦1 + 𝑦2 ≤ 1,
𝑦1 − 𝑦2 ≤ 0.

3. Let 𝐴 ∈ R𝑚×𝑛 and 𝑐 ∈ R𝑛 be given. Let 𝑣 : R𝑚 → R be the function
defined by 𝑣 (𝑏) = minimize 𝑐⊤𝑥 subject to 𝐴𝑥 ≥ 𝑏, 𝑥 ≥ 0. (1) ,
i.e., 𝑣 (𝑏) is the optimal value of (1) when RHS of first inequality con-
straint is 𝑏.
(a) Let 𝑏 ∈ R𝑚 be fixed. Find the dual of Problem (1).
(b) Using the result in (a), or otherwise, show that the function 𝑣 ( ·) is
convex on the set {𝑏 ∈ R𝑚 : 𝑣 (𝑏) is finite}.

A: (a) 𝑣 (𝑏) = − max(−𝑐)⊤𝑥 s.t.
[
−𝐴
−𝐼

]
𝑥 ≤

[
−𝑏
0

]
.

Dual: max 𝑏⊤𝑧 s.t. 𝐴⊤𝑧 + 𝑤 = 𝑐 ( or 𝐴⊤𝑧 ≤ 𝑐) , 𝑧, 𝑤 ≥ 0.
(b) 𝑣 (𝑏) = max 𝑏⊤𝑧 s.t. 𝐴⊤𝑧 ≤ 𝑐, 𝑧 ≥ 0. by the LP strong du-
ality theorem. Since 𝑣 ( ·) is a pointwise supremum of the collection
{𝑏 ↦→ 𝑏⊤𝑧 : 𝐴⊤𝑧 ≤ 𝑐, 𝑧 ≥ 0} of linear functions, 𝑣 ( ·) is convex.

4. 23Q5. Let 𝐴 ∈ R𝑝×𝑑 , 𝑏 ∈ R𝑝 be given. Consider the set:
X = {𝑥 ∈ R𝑑 : 𝐴𝑥 = 𝑏, 𝑥 ≥ 0}. Show that X is bounded iff
there exists 𝑢 ∈ R𝑝 such that 𝐴⊤𝑢 > 0. Hint: the set X is unbounded
iff there exists 𝑐 ∈ R𝑑 such that 𝐴𝑐 = 0, 𝑐 ≥ 0, 𝑐 ≠ 0.
A: Follow the proof of Gordan’s Theorem.
21Q4. Let 𝐴 ∈ R𝑚×𝑛 , 𝑏 ∈ R𝑚 , 𝑐 ∈ R𝑛 , consider the following two
sets:
𝑆 = {𝑥 ∈ R𝑛 : 𝐴𝑥 ≥ 𝑏, 𝑥 ≥ 0}, 𝑇 = {𝑦 ∈ R𝑚 : 𝐴⊤𝑦 ≤
𝑐, 𝑦 ≥ 0}
(a) Suppose that 𝑇 ≠ ∅, 𝑆 ≠ ∅. Prove that at least one of the above two
sets is unbounded. Hint: notice that if there exists a direction 𝑑 ∈ R𝑛

such that 𝐴𝑑 ≥ 𝑏, 𝑑 ≥ 0, 𝑑 ≠ 0, then 𝑆 must be unbounded.
(b) Could both of the two sets be unbounded simultaneously?
Farkas: (I) 𝐴𝑥 > 0, 𝑥 ≥ 0. (II) 𝑦⊤𝐴 ≤ 0, 𝑦 ≥ 0, 𝑦 ≠ 0. A: (a)
Suppose Farkas (2) holds: ∃ 𝑦∗ s.t. 𝐴⊤𝑦∗ ≤ 𝑐, 𝑦∗ ≥ 0, 𝑦∗ ≠ 0. Since
𝑇 ≠ ∅, ∃ �̄� s.t. 𝐴⊤ �̄� ≤ 𝑐, �̄� ≥ 0, �̄� ≠ 0. Then consider 𝑦 = 𝑦∗ + �̄�:
𝐴⊤ (𝑦∗ + �̄�) ≤ 𝑐, 𝑦∗ + �̄� ≥ 0. Then 𝑇 is unbounded.
Suppose Farkas’ lemma (2) does not hold: ∃ 𝑥∗ s.t. 𝐴𝑥∗ > 0 and 𝑥∗ ≥ 0.
Since 𝑆 ≠ ∅, ∃ �̄� s.t. 𝐴�̄� ≥ 𝑏, �̄� ≥ 0. Then 𝐴�̄� + 𝐴𝑥∗ ≥ 𝑏 and
�̄� + 𝑥∗ ≥ 0. Since 𝐴�̄� + 𝐴𝑥∗ ≥ 𝑏, �̄� + 𝑥∗ ≥ 0, �̄� + 𝑥∗ ≠ 0, then 𝑆 is
unbounded.
(b) Yes, they can. Let 𝐴 =

[
0 0

]
∈ R1×2 , 𝑏 = 0, 𝑐 =

[
0
]
∈ R2 .

Then for any 𝑥 ∈ R2
+ , we have 𝐴𝑥 = 0 ≥ 𝑏 = 0. For any 𝑦 ∈ R+ , we

have 𝐴⊤𝑦 =

[
0
0

]
≤ 𝑐 =

[
0
0

]
.

Thus, both 𝑆 and 𝑇 in this case are unbounded.



5. Farkas: (I) 𝐴𝑥 ≥ 0, 𝐴𝑥 ≠ 0; (II) 𝐴⊤𝑦 = 0, 𝑦 > 0.
A: (S1) Suppose �̄� ∈ R𝑛 and �̄� ∈ R𝑚 satisfying (I) and (II). Then, since
�̄� > 0, 𝐴�̄� ≥ 0, and 𝐴�̄� ≠ 0, we have �̄�⊤𝐴�̄� > 0; since 𝐴⊤ �̄� = 0, we
have �̄�⊤𝐴�̄� = 0. contradiction.
Now, suppose system (I) no solution. Then the system (I’) 𝐴𝑥 ≥
0, 𝑒⊤𝐴𝑥 = 1 no solution either. System (I’) is equivalent to[

𝐴 −𝐴 −𝐼
𝑒⊤𝐴 −𝑒⊤𝐴 0⊤

] [
𝑥+
𝑥−
𝑠

]
=

[
0
1

]
, (𝑥+ , 𝑥− , 𝑠) ≥ 0.

Hence, by Farkas’ lemma, there exists a �̄� = (�̄�, 𝑡 ) ∈ R𝑚+1 such that
𝐴⊤ 𝐴⊤𝑒
−𝐴⊤ −𝐴⊤𝑒
−𝐼 0


[
�̄�
𝑡

]
≤

[
0

𝑡 > 0

]
,

or equivalently, 𝐴⊤ (�̄� + 𝑡𝑒) = 0, �̄� ≥ 0, 𝑡 > 0. Now, let �̄� = �̄� + 𝑡𝑒 ∈
R𝑚 . Clearly, we have 𝐴⊤ �̄� = 0. Moreover, since �̄� ≥ 0 and 𝑡 > 0, we
have �̄� ≥ 𝑡𝑒 > 0.

6. Let 𝐴 ∈ R𝑚×𝑛 and 𝑐 ∈ R𝑛 be given. Show that {𝑥 ∈ R𝑛 : 𝐴𝑥 ≤
0} ⊆ {𝑥 ∈ R𝑛 : 𝑐⊤𝑥 ≤ 0} if and only if 𝐴⊤𝑦 = 𝑐 for some 𝑦 ≥ 0.
A: By Farkas’ lemma, exactly one of the following systems is solvable:
(I) 𝐴⊤𝑦 = 𝑐, 𝑦 ≥ 0. (II) 𝐴𝑥 ≤ 0, 𝑐⊤𝑥 > 0.
It follows that (I) is solvable if and only if 𝑐⊤𝑥 ≤ 0 whenever 𝑥 ∈ R𝑛

satisfies 𝐴𝑥 ≤ 0.
7. Farkas: (I) 𝐴𝑥 < 0, 𝑥 ≥ 0. (II) 𝐴⊤𝑦 ≥ 0, 𝑦 ≥ 0, 𝑦 ≠ 0.

A: (I’) 𝐴𝑥 + 𝑠 = −𝑒, (𝑥, 𝑠) ≥ 0.
8. Let 𝐴 ∈ R𝑚×𝑛 and 𝑐 ∈ R𝑛 be given. Define 𝐶 = {𝑥 ∈ R𝑛 : 𝐴𝑥 ≥

0}. Suppose that 0 is a basic feasible solution of𝐶 . Consider the follow-
ing LP: 𝑣∗ = min𝑥∈𝐶 𝑐⊤𝑥. Show that 𝑣∗ = −∞ if and only if there
exists a 𝑑 ∈ 𝐶 \ {0} such that there are 𝑛 − 1 linearly independent active
constraints at 𝑑 and 𝑐⊤𝑑 < 0.
A: Suppose that there exists a 𝑑 ∈ 𝐶 \ {0} satisfying 𝑐⊤𝑑 < 0. Then,
we have 𝜆𝑑 ∈ 𝐶 for any 𝜆 > 0, which implies that 𝑣∗ = −∞.
Conversely, suppose that 𝑣∗ = −∞. Let 𝐴 ∈ R𝑚×𝑛 be the matrix
whose 𝑖-th row is 𝑎⊤

𝑖
, where 𝑖 = 1, ..., 𝑚. By scaling if necessary, there

exists an �̄� ∈ 𝐶 such that 𝑐⊤ �̄� = −1. This implies that the polyhedron
𝑃 = {𝑥 ∈ R𝑛 : 𝑎⊤

𝑖
𝑥 ≥ 0 for 𝑖 = 1, ..., 𝑚, 𝑐⊤𝑥 = −1} is non-empty.

Since 0 is a basic feasible solution of 𝐶 , there exist 𝑛 vectors in the col-
lection {𝑎1 , ..., 𝑎𝑚 } that are linearly independent. Hence, by Theorem
3, 𝑃 has at least one extreme point, say 𝑑 ∈ R𝑛 . Note that there are 𝑛
linearly independent active constraints at 𝑑. Moreover, since 𝑐⊤𝑑 = −1,
we have 𝑑 ≠ 0. Thus, there are 𝑛 − 1 linearly independent constraints of
the form 𝑎⊤

𝑖
𝑥 ≥ 0 that are active at 𝑑.

9. A primal-dual pair of LPs in standard forms such that neither is feasible.

A: 𝐴 =

[
−1 1
−1 1

]
, 𝑏 =

[
1
2

]
, 𝑐 =

[
−1
−1

]
.

10. Let 𝑃 ∈ R𝑛×𝑛 be a stochastic matrix; i.e., 𝑃𝑖 𝑗 ≥ 0 for 𝑖, 𝑗 ∈
{1, . . . , 𝑛} and 𝑃𝑒 = 𝑒. Show the system 𝑃⊤𝑥 = 𝑥, 𝑥 ≥ 0, 𝑥 ≠ 0
is solvable.
A: Consider the LP: max 𝑒⊤𝑥 s.t. (𝐼 − 𝑃)⊤𝑥 = 0 𝑥 ≥ 0.
Dual: min 0 s.t. (𝑃 − 𝐼 )𝑦 ≥ 𝑒. We claim that (D) is infeasible. In-
deed, since 𝑃 is a stochastic matrix, each entry of the vector 𝑃𝑦 is a convex
combination of the entries of 𝑦. In particular, we have [𝑃𝑦 ]𝑖 ≤ 𝑦max
for 𝑖 = 1, ..., 𝑛. However, one of the entries of 𝑦 + 𝑒 equals 𝑦max + 1.
This yields the desired contradiction.
It follows (P) is either infeasible or unbounded. However, 𝑥 = 0 is
feasible for (P). Hence, we conclude (P) is unbounded, which implies
𝑃⊤𝑥 = 𝑥, 𝑥 ≥ 0, 𝑥 ≠ 0 is solvable.

11. max 𝑐⊤𝑥 s.t. 𝐴𝑥 ≤ 𝑏, 𝑥 ≥ 0. Dual: min −𝑏⊤𝑦 s.t. 𝐴⊤𝑦 ≤
−𝑐, 𝑦 ≤ 0
Equivalent to: min 𝑏⊤𝑦 s.t. 𝐴⊤𝑦 ≥ 𝑐, 𝑦 ≥ 0.

12. min 𝑐⊤𝑥 s.t. 𝐴𝑥 ≥ 𝑐, 𝑥 ≥ 0. Show if �̄� ∈ R𝑛 satisfies 𝐴�̄� = 𝑐
and �̄� ≥ 0. From 6, dual given by: max 𝑐⊤𝑦 s.t. 𝐴𝑦 ≤ 𝑐, 𝑦 ≥ 0.
When 𝐴�̄� = 𝑐 and �̄� ≥ 0, �̄� is feasible for both P and D, and P and D
have the same value. By strong duality, �̄� is optimal.

13. Reformulate: min ∥𝐴𝑥 − 𝑏∥2
2 s.t. ∥𝑥 ∥0 ≤ 𝐾, 𝑥 ∈ R𝑛 . We are

given a constant𝑀 > 0 such that ∥𝑥∗ ∥0 ≤ 𝑀 for some optimal solution
𝑥∗ . A: min ∥𝐴𝑥 − 𝑏∥2

2 s.t.
∑𝑛
𝑖=1 𝑦𝑖 ≤ 𝐾, 𝑥𝑖 ≤ 𝑀𝑦𝑖 for 𝑖 =

1, ..., 𝑛,
𝑥𝑖 ≥ −𝑀𝑦𝑖 for 𝑖 = 1, ..., 𝑛, 𝑦𝑖 ∈ {0, 1} for 𝑖 = 1, ..., 𝑛.

14. Let 𝑃 ⊆ R𝑛 be a non-empty polyhedron. Suppose for 𝑖 = 1, ..., 𝑛, we
either have constraint 𝑥𝑖 ≥ 0 or constraint 𝑥𝑖 ≤ 0 in description of 𝑃.
Does 𝑃 have at least 1 vertex? A: Yes. By assumption, the polyhedron 𝑃

contains the constraints
{
𝑥𝑖 ≥ 0 for 𝑖 ∈ 𝐼,
𝑥𝑖 ≤ 0 for 𝑖 ∉ 𝐼,

where 𝐼 ⊆ {1, ..., 𝑛}. We

claim that 𝑃 does not contain a line, which would then imply the desired
conclusion. Suppose that this is not the case. Then, there exist 𝑥0 ∈ 𝑃
and 𝑑 ≠ 0 such that 𝑥0 + 𝛼𝑑 ∈ 𝑃 for all 𝛼 ∈ R. Let 𝑗 ∈ {1, ..., 𝑛} be
such that 𝑑 𝑗 ≠ 0. If 𝑗 ∈ 𝐼 , then (𝑥0 + 𝛼𝑑) 𝑗 < 0 as 𝛼→ −∞, which
contradicts the hypothesis that (𝑥0 + 𝛼𝑑) 𝑗 ≥ 0 for all 𝛼 ∈ R. Also a
similar contradiction for the case where 𝑗 ∉ 𝐼 .

5 Conic Linear Programming
5.1 Introduction
The relation ≥ defines a partial order on vectors in R𝑛 ; i.e., it satisfies

(a) (Reflexivity) 𝑢 ≥ 𝑢 for all 𝑢 ∈ R𝑛 ;
(b) (Anti-Symmetry) 𝑢 ≥ 𝑣 and 𝑣 ≥ 𝑢 imply 𝑢 = 𝑣 for all 𝑢, 𝑣 ∈ R𝑛 ;
(c) (Transitivity) 𝑢 ≥ 𝑣 and 𝑣 ≥ 𝑤 imply 𝑢 ≥ 𝑤 for all 𝑢, 𝑣, 𝑤 ∈ R𝑛 .

The relation ≥ is compatible with linear operations; i.e., it satisfies
(d) (Homogeneity) for any 𝑢, 𝑣 ∈ R𝑛 and 𝛼 ≥ 0, if 𝑢 ≥ 𝑣, then 𝛼𝑢 ≥ 𝛼𝑣;
(e) (Additivity) for any 𝑢, 𝑣, 𝑤, 𝑧 ∈ R𝑛 , if 𝑢 ≥ 𝑣 and 𝑤 ≥ 𝑧, then

𝑢 + 𝑤 ≥ 𝑣 + 𝑧.
Every good relation ⪰ on 𝐸 induces a pointed cone 𝐾 = {𝑢 ∈ 𝐸 : 𝑢 ⪰ 0}
with 0 ∈ 𝐾 :
1. 𝐾 is non-empty and closed under addition; i.e., 𝑢 + 𝑣 ∈ 𝐾 ∀𝑢, 𝑣 ∈ 𝐾 .
2. 𝐾 is a cone; i.e., for any 𝑢 ∈ 𝐾 and 𝛼 ≥ 0, we have 𝛼𝑢 ∈ 𝐾 .
3. 𝐾 is pointed; i.e., if 𝑢 ∈ 𝐾 and −𝑢 ∈ 𝐾 , then 𝑢 = 0.
The first property follows from (a) (which implies that 0 ∈ 𝐾) and (e); the
second follows from (d). The third: observe 𝑢 ⪰ 𝑢 by (a) with −𝑢 ⪰ 0 and
(e) implies that 0 ⪰ 𝑢. Since 𝑢 ⪰ 0, it follows from (b) that 𝑢 = 0.
Note that a pointed cone𝐾 is automatically convex. To prove this, let𝑢, 𝑣 ∈ 𝐾
and 𝛼 ∈ (0, 1) . Then, since 𝐾 is a cone, we have 𝛼𝑢, (1 − 𝛼)𝑣 ∈ 𝐾 .
Since 𝐾 is closed under addition, we conclude that 𝛼𝑢 + (1 − 𝛼)𝑣 ∈ 𝐾
The converse is also true; i.e., given an arbitrary pointed cone 𝐾 ⊆ 𝐸 with
0 ∈ 𝐾 , we can define a good relation on 𝐸. 𝑢 ⪰𝐾 𝑣 ⇐⇒ 𝑢 − 𝑣 ∈ 𝐾. By
definition, we have 𝑢 ⪰𝐾 𝑣 iff 𝑢 − 𝑣 ⪰𝐾 0. Now, we claim ⪰𝐾 is good:
(a) (Reflexivity) Since 0 ∈ 𝐾 , we see that for any 𝑢 ∈ 𝐸, we have 𝑢−𝑢 ∈ 𝐾 ;
i.e., 𝑢 ⪰𝐾 𝑢. (b) (Anti-Symmetry) If 𝑢 − 𝑣 ∈ 𝐾 and 𝑣 − 𝑢 ∈ 𝐾 , then
by the pointedness of 𝐾 , we have 𝑢 − 𝑣 = 0; i.e., 𝑢 = 𝑣. (c) (Tran-
sitivity) If 𝑢 − 𝑣 ∈ 𝐾 and 𝑣 − 𝑤 ∈ 𝐾 , then by the addition property,
we have 𝑢 − 𝑤 ∈ 𝐾 ; i.e., 𝑢 ⪰𝐾 𝑤. (d) (Homogeneity) Suppose that
𝑢 − 𝑣 ∈ 𝐾 and 𝛼 ≥ 0. By the conic property, we have 𝛼(𝑢 − 𝑣) ∈ 𝐾 ,

which implies that 𝛼𝑢 ⪰𝐾 𝛼𝑣. The case where 𝛼 = 0 trivially follows from
reflexivity. (e) (Additivity) Suppose that 𝑢− 𝑣 ∈ 𝐾 and𝑤 − 𝑧 ∈ 𝐾 . By
the addition property, we have 𝑢 +𝑤 − (𝑣 + 𝑧) ∈ 𝐾 ; i.e., 𝑢 +𝑤 ⪰𝐾 𝑣 + 𝑧.
Example 1 (Representative Closed Pointed Cones)
1. Non-Negative Orthant. R𝑛+ = {𝑥 ∈ R𝑛 : 𝑥 ≥ 0}. (a pointed cone in
R𝑛 equipped with the usual inner product)
Good relation: For 𝑢, 𝑣 ∈ R𝑛 , 𝑢 ≥ 𝑣 iff 𝑢𝑖 ≥ 𝑣𝑖 ∀𝑖 = 1, . . . , 𝑛.
2. Lorentz Cone (SOC). Q𝑛+1 = { (𝑡 , 𝑥 ) ∈ R × R𝑛 : 𝑡 ≥ ∥𝑥 ∥2 }.
(a pointed cone in R𝑛+1 equipped with the usual inner product)
Good relation: For (𝑠, 𝑢) , (𝑡 , 𝑣) ∈ R × R𝑛 , (𝑠, 𝑢) ⪰Q𝑛+1 (𝑡 , 𝑣) iff
𝑠 − 𝑡 ≥ ∥𝑢 − 𝑣 ∥2 .

3. Positive Semidefinite Cone. 𝑆𝑛+ = {𝑋 ∈ 𝑆𝑛 : 𝑢⊤𝑋𝑢 ≥ 0∀𝑢 ∈ R𝑛 }
= {𝑋 ∈ 𝑆𝑛 : 𝜆min (𝑋) ≥ 0}.
(a pointed cone in 𝑆𝑛 of 𝑛 × 𝑛 symmetric matrices equipped with Frobenius
inner product 𝑋 · 𝑌 = tr(𝑋⊤𝑌 ) = tr(𝑋𝑌 ) = ∑𝑛

𝑖=1
∑𝑛
𝑗=1 𝑋𝑖 𝑗𝑌𝑖 𝑗 )

(note that 𝑆𝑛 can be identified with R𝑛(𝑛+1)/2).
Good relation: positive semidefinite ordering: For 𝑋,𝑌 ∈ 𝑆𝑛 , we have
𝑋 ⪰ 𝑌 iff 𝑋 − 𝑌 is positive semidefinite (denoted by 𝑋 − 𝑌 ⪰ 0).
4. Zero Cone. 𝐾 = {0}.
All cones in Example 1 are closed and have non-empty interiors, consequences:
First, if {𝑢𝑖 }, {𝑣𝑖 } are sequences in 𝐸 such that
𝑢𝑖 ⪰𝐾 𝑣𝑖 for 𝑖 = 1, 2, . . . ; 𝑢𝑖 → 𝑢 ∈ 𝐸; 𝑣𝑖 → 𝑣 ∈ 𝐸, then 𝑢 ⪰𝐾 𝑣.
Second, if the pointed cone 𝐾 has a non-empty interior, then define a strict
relation ≻𝐾 via 𝑢 ≻𝐾 𝑣 ⇐⇒ 𝑢 − 𝑣 ∈ int(𝐾 ) .
Proposition 1. Let 𝐸1 , . . . , 𝐸𝑛 be finite-dimensional Euclidean spaces
and 𝐾𝑖 ⊆ 𝐸𝑖 be closed pointed cones with non-empty interiors, where
𝑖 = 1, . . . , 𝑛. Then, the set
𝐾 ≡ 𝐾1×...×𝐾𝑛 = { (𝑥1 , . . . , 𝑥𝑛 ) ∈ 𝐸1×...×𝐸𝑛 : 𝑥𝑖 ∈ 𝐾𝑖 for 𝑖 = 1, ..., 𝑛}
is a closed pointed cone with non-empty interior.

5.2 Conic Linear Programming
Let 𝐸 be a finite-dimensional Euclidean space equipped with an
inner product • and a good relation ⪰. we define the
standard form Conic Linear Programming (CLP) problem as follows:
𝑣∗𝑝 = inf 𝑐 • 𝑥 s.t. 𝑎𝑖 • 𝑥 = 𝑏𝑖 for 𝑖 = 1, ..., 𝑚, 𝑥 ⪰𝐾 0 (P).
Define the dual cone of the cone𝐾 as𝐾∗ = {𝑤 ∈ 𝐸 | 𝑥•𝑤 ≥ 0∀𝑥 ∈ 𝐾 }.
The dual of (P) can be given by:
𝑣∗
𝑑
= sup 𝑏⊤𝑦 s.t. 𝑐 − ∑𝑚

𝑖=1 𝑦𝑖𝑎𝑖 ∈ 𝐾
∗ , 𝑦 ∈ R𝑚 (D), or

𝑣∗
𝑑
= sup 𝑏⊤𝑦 s.t.

∑𝑚
𝑖=1 𝑦𝑖𝑎𝑖 + 𝑠 = 𝑐, 𝑦 ∈ R𝑚 , 𝑠 ⪰𝐾∗ 0 (D).

Proposition 2 Let 𝐾 ⊆ 𝐸 be a non-empty set. Then, the following hold:
(a) The set 𝐾∗ is a closed convex cone, regardless of what 𝐾 (≠ ∅) is.
(b) If 𝐾 is a closed convex cone, then so is 𝐾∗ . Moreover, (𝐾∗ )∗ = 𝐾 .
(c) If 𝐾 has a non-empty interior, then 𝐾∗ is pointed.
(d) If 𝐾 is a closed pointed cone, then 𝐾∗ has a non-empty interior.

Proof (b) It is clear from the definition that 𝐾 ⊆ (𝐾∗ )∗ .
To establish the converse, let 𝑣 ∈ (𝐾∗ )∗ be arbitrary. If 𝑣 ∉ 𝐾 , then by
the separation theorem, ∃𝑦 ∈ R𝑛 s.t. inf𝑥∈𝐾 𝑦⊤𝑥 > 𝑦⊤𝑣. We claim that
𝜃∗ = inf𝑥∈𝐾 𝑦⊤𝑥 = 0: Clearly, we have 𝜃∗ ≤ 0 since 0 ∈ 𝐾 . Now, if
𝜃∗ < 0, then ∃𝑥′ ∈ 𝐾 s.t. 0 > 𝑦⊤𝑥′ > 𝑦⊤𝑣. However, since 𝛼𝑥′ ∈ 𝐾
for all 𝛼 > 0, we see that 𝛼𝑦⊤𝑥′ > 𝑦⊤𝑣 for all 𝛼 ≥ 1, which is impos-
sible. Thus, the claim is established. In particular, this shows that 𝑦 ∈ 𝐾∗ .
However, we then have the inequality 0 > 𝑦⊤𝑣, which contradicts the fact
that 𝑣 ∈ (𝐾∗ )∗ . Hence, we conclude that 𝑣 ∈ 𝐾 .
(c) Suppose that 𝐾∗ is not pointed. Then, ∃𝑤 ∈ 𝐾∗ s.t. 𝑤 ≠ 0 and
𝑥 • 𝑤 = 0 for all 𝑥 ∈ 𝐾 . This implies that 𝐾 is a subset of the hyperplane
𝐻 (𝑤, 0) = {𝑥 ∈ 𝐸 : 𝑤 • 𝑥 = 0}, which shows that int(𝐾 ) = ∅.
(d) Suppose that int(𝐾∗ ) = ∅. Then, there exists a hyperplane 𝐻 (𝑠, 0) =
{𝑤 ∈ 𝐸 : 𝑠 • 𝑤 = 0} with 𝑠 ≠ 0 s.t. 𝐾∗ ⊆ 𝐻 (𝑠, 0) . Since 𝐾
is a closed convex cone by assumption, using the result in (b), we compute
𝐾 = (𝐾∗ )∗ = {𝑥 ∈ 𝐸 : 𝑥 • 𝑤 ≥ 0 for all 𝑤 ∈ 𝐾∗ }
⊇ {𝑥 ∈ 𝐸 : 𝑥 • 𝑤 ≥ 0 for all 𝑤 ∈ 𝐻 (𝑠, 0) } = {𝜆𝑠 : 𝜆 ∈ R}.
This shows that 𝐾 is not pointed. □
Corollary 1 Let 𝐾 ⊆ 𝐸 be a closed pointed cone with non-empty interior.
Then, so is the dual cone 𝐾∗ ⊆ 𝐸.
Proposition 3 Let 𝐸1 , . . . , 𝐸𝑛 be finite-dimensional Euclidean spaces
equipped with the inner products •1 , . . . , •𝑛 , respectively. Let 𝐸 =
𝐸1 × ... × 𝐸𝑛 and define the inner product • on 𝐸 by
𝑢 • 𝑣 =

∑𝑛
𝑖=1 𝑢𝑖 •𝑖 𝑣𝑖 where 𝑢𝑖 , 𝑣𝑖 ∈ 𝐸𝑖 , for 𝑖 = 1, . . . , 𝑛.

Suppose that 𝐾𝑖 ⊆ 𝐸𝑖 (where 𝑖 = 1, ..., 𝑛) are closed pointed cones with
non-empty interiors and 𝐾 = 𝐾1 × ... × 𝐾𝑛 . Then, the dual cone 𝐾∗ is
𝐾∗ = 𝐾∗

1 × ... × 𝐾∗
𝑛 and is a closed pointed cone with non-empty interior.

Observation In (D), the objective function is linear, and the map R𝑚 ∋ 𝑦 ↦→
𝑐 − ∑𝑚

𝑖=1 𝑎𝑖 𝑦𝑖 ∈ 𝐸 is affine:
𝑀 (𝛼𝑦 + (1 − 𝛼)𝑧) = 𝛼𝑀 (𝑦) + (1 − 𝛼)𝑀 (𝑧) .
Observation (R𝑛+ )∗ = R𝑛+ ; (Q𝑛+1 )∗ = Q𝑛+1; (S+ )∗ = S+ .
Proof (1) On one hand, we haveR𝑛+ ⊆ (R𝑛+ )∗ because 𝑦⊤𝑥 ≥ 0 if 𝑥, 𝑦 ≥ 0.
On the other hand, suppose that 𝑦 ∈ (R𝑛+ )∗ . Then, we have 𝑥⊤𝑦 ≥ 0 for
all 𝑥 ∈ R𝑛+ . In particular, we have 𝑒⊤

𝑖
𝑦 = 𝑦𝑖 ≥ 0 for 𝑖 = 1, . . . , 𝑛, where

𝑒𝑖 ∈ R𝑛 is the 𝑖-th standard basis vector. This shows that 𝑦 ∈ R𝑛+ , as desired.
(2) (𝑄𝑛+1 )∗ = { (𝑠, 𝑦) ∈ R × R𝑛 : 𝑠𝑡 + 𝑥⊤𝑦 ≥ 0, ∀(𝑡 , 𝑥 ) ∈ 𝑄𝑛+1 }.
Prove𝑄𝑛+1 ⊆ (𝑄𝑛+1 )∗: Suppose (𝑠, 𝑦) ∈ 𝑄𝑛+1 , i.e., 𝑠 ≥ ∥𝑦 ∥2 . Then,
∀(𝑡 , 𝑥 ) ∈ 𝑄𝑛+1 , 𝑠𝑡 ≥ ∥𝑥 ∥2 ∥𝑦 ∥2 ≥ −𝑥⊤𝑦 (by Cauchy-Schwarz). This
implies (𝑠, 𝑦) ∈ (𝑄𝑛+1 )∗ . Thus,𝑄𝑛+1 ⊆ (𝑄𝑛+1 )∗ .
Prove (𝑄𝑛+1 )∗ ⊆ 𝑄𝑛+1: Suppose (𝑠, 𝑦) ∈ (𝑄𝑛+1 )∗ . Since (1, 0) ∈
𝑄𝑛+1 , we have 𝑠 ≥ 0. If 𝑦 = 0, then automatically we have (𝑠, 𝑦) ∈ 𝑄𝑛+1 .
If 𝑦 ≠ 0,

(
𝑠, − 𝑠𝑦

∥𝑦∥2

)
∈ 𝑄𝑛+1 ⇒ 0 ≤ (𝑠, 𝑦)⊤

(
𝑠, − 𝑠𝑦

∥𝑦∥2

)
=

𝑠2 − 𝑠∥𝑦 ∥2 . If 𝑠 > 0, this is equivalent to 𝑠 ≥ ∥𝑦 ∥2 , i.e., (𝑠, 𝑦) ∈ 𝑄𝑛+1 .
If 𝑠 = 0, (𝑠, 𝑦) ∈ (𝑄𝑛+1 )∗ ⇒ 𝑥⊤𝑦 ≥ 0(∀𝑥 ∈ R𝑛 ) ⇒ 𝑦 = 0 ⇒
(𝑠, 𝑦) = (0, 0) ∈ 𝑄𝑛+1 .
(3) (HW) By definition, (𝑆𝑛+ )∗ = {𝑌 ∈ 𝑆𝑛 : 𝑋 •𝑌 ≥ 0 for all 𝑋 ∈ 𝑆𝑛+ }.
Suppose that𝑌 ∈ 𝑆𝑛+ . Let𝑌 =𝑈Σ𝑈⊤ be its spectral decomposition. Then,
for any 𝑋 ∈ 𝑆𝑛+ , we have𝑈⊤𝑋𝑈 ∈ 𝑆𝑛+ and hence
𝑋•𝑌 = (𝑈⊤𝑋𝑈 ) •Σ =

∑𝑛
𝑖=1 (𝑈

⊤𝑋𝑈 )𝑖𝑖Σ𝑖𝑖 ≥ 0. It follows𝑌 ∈ (𝑆𝑛+ )∗ .
Conversely, suppose that 𝑌 ∈ (𝑆𝑛+ )∗ . Let 𝑌 = 𝑈Σ𝑈⊤ be its spectral
decomposition. Since 𝑋𝑖 = 𝑈𝑒𝑖𝑒

⊤
𝑖
𝑈 ∈ 𝑆𝑛+ for 𝑖 = 1, ..., 𝑛, we have

0 ≤ 𝑋𝑖 •𝑌 = Σ𝑖𝑖 for 𝑖 = 1, ..., 𝑛. This shows that all the eigenvalues of𝑌
are non-negative, which implies that𝑌 ∈ 𝑆𝑛+ , as desired.□
By Corollary 1, if 𝐾 is a closed pointed cone with non-empty interior, then so
is𝐾∗ . In this case, (P) and (D) are of the same nature: both optimizing a linear
function over a set defined by linear equality constraints and a conic constraint
that is associated with a closed pointed cone with non-empty interior.
Example 2 (Representative CLP Problems)

1. Linear Programming (LP). By taking 𝐸 = R𝑛 , 𝐾 = R𝑛+ , and
𝑢 • 𝑣 = 𝑢⊤𝑣 for 𝑢, 𝑣 ∈ 𝐸, Problem (P) becomes
inf 𝑐⊤𝑥 s.t. 𝑎⊤

𝑖
𝑥 = 𝑏𝑖 for 𝑖 = 1, . . . , 𝑚, 𝑥 ∈ R𝑛+ ,

𝐾∗ = (R𝑛+ )∗ = R𝑛+ . Problem (D) becomes
sup 𝑏⊤𝑦 s.t.

∑𝑚
𝑖=1 𝑦𝑖𝑎𝑖 + 𝑠 = 𝑐, 𝑦 ∈ R𝑚 , 𝑠 ∈ R𝑛+ ,

which are LP primal and dual forms.
2. Second-Order Cone Programming (SOCP) Let𝐸 = R𝑛+1 ,𝐾 = 𝑄𝑛+1 ,
and 𝑢 • 𝑣 = 𝑢⊤𝑣 for 𝑢, 𝑣 ∈ 𝐸. Then, Problem (P) becomes
inf 𝑐⊤𝑥 s.t. 𝑎⊤

𝑖
𝑥 = 𝑏𝑖 for 𝑖 = 1, ..., 𝑚, 𝑥 ∈ 𝑄𝑛+1 , (SOCP)

which is an SOCP in standard primal form.
(𝑄𝑛+1 )∗ = 𝑄𝑛+1 . Thus, Problem (D) becomes
sup 𝑏⊤𝑦 s.t.

∑𝑚
𝑖=1 𝑦𝑖𝑎𝑖 + 𝑠 = 𝑐, 𝑦 ∈ R𝑚 , 𝑠 ∈ 𝑄𝑛+1 , (SOCD)

which is an SOCP in standard dual form.
Explicitly: Let 𝑎𝑖 = (𝑢𝑖 , 𝑎𝑖,1 , . . . , 𝑎𝑖,𝑛 ) ∈ R𝑛+1 and 𝑐 = (𝑣, 𝑑) ∈
R𝑛+1 with 𝑑 ∈ R𝑛 . Then, we have

∑𝑚
𝑖=1 𝑦𝑖𝑎𝑖 = (𝑢⊤𝑦, 𝐴⊤𝑦) , where

𝐴 ∈ R𝑚×𝑛 is the matrix whose 𝑖-th row contains the entries 𝑎𝑖,1 , . . . , 𝑎𝑖,𝑛 .
It follows that the constraint 𝑠 = 𝑐 − ∑𝑚

𝑖=1 𝑦𝑖𝑎𝑖 ∈ 𝑄
𝑛+1 is equivalent to

(𝑣 − 𝑢⊤𝑦, 𝑑 − 𝐴⊤𝑦) ∈ 𝑄𝑛+1 , i.e., 𝑣 − 𝑢⊤𝑦 ≥ ∥𝑑 − 𝐴⊤𝑦 ∥2 ,
which implies Problem (SOCP) takes the form
sup 𝑏⊤𝑦 s.t. (𝑣 − 𝑢⊤𝑦, 𝑑 − 𝐴⊤𝑦) ∈ 𝑄𝑛+1 . (SOCD’)
In other words, the problem of optimizing a linear function subject to the
constraint that the image of an affine map belongs to a SOC is an SOCP.

Note: Matrix form: 𝐴 =


−𝑎⊤1 −
...

−𝑎⊤𝑚−

 , 𝐴𝑥 =


𝑎⊤1 𝑥
...

𝑎⊤𝑚𝑥

 , (𝐴𝑥 )𝑖 = 𝑎⊤𝑖 𝑥;

𝐴⊤𝑦 =
[
𝑎1 , ..., 𝑎𝑚

] [
𝑦1
...
𝑦𝑚

]
=

[
𝑦1𝑎11 + ... + 𝑦𝑚𝑎𝑚1

...
𝑦1𝑎1𝑛 + ... + 𝑦𝑚𝑎𝑚𝑛

]
=

∑𝑚
𝑖=1 𝑦𝑖𝑎𝑖 .

A n extension of Problem (SOCD) is to allow multiple SOC constraints; i.e.,
sup 𝑏⊤𝑦

s.t. (𝑣 𝑗 − (𝑢 𝑗 )⊤𝑦, 𝑑 𝑗 − (𝐴 𝑗 )⊤𝑦) ∈ 𝑄
𝑛𝑗+1
𝑗

for 𝑗 = 1, ..., 𝑝 (6),

where𝑢 𝑗 ∈ R𝑚 , 𝑣 𝑗 ∈ R, 𝐴𝑗 ∈ R𝑚×𝑛𝑗 , and 𝑑 𝑗 ∈ R𝑛𝑗 for 𝑖 = 1, ..., 𝑝.
This can also be viewed as an SOCP, as it can be put into the form
sup 𝑏⊤𝑦
s.t.

∑𝑚
𝑖=1 𝑦𝑖 �̄�𝑖 + 𝑠 = �̄�, 𝑦 ∈ R𝑚 , 𝑠 ∈ 𝑄𝑛1+1

1 × · · · × 𝑄𝑛𝑝+1
𝑝 .

Here, �̄� = (𝑐1 , ..., 𝑐𝑝 ) , 𝑠 = (𝑠1 , ..., 𝑠𝑝 ) , and �̄�𝑖 = (𝑎1
𝑖
, ..., 𝑎

𝑝

𝑖
) are

vectors in R𝑛1+1 × · · · × R𝑛𝑝+1 , with 𝑐 𝑗 = (𝑣 𝑗 , 𝑑 𝑗 ) ∈ R𝑛𝑗+1

and 𝑎 𝑗
𝑖
= (𝑢 𝑗

𝑖
, 𝑎
𝑗

𝑖,1 , ..., 𝑎
𝑗

𝑖,𝑛 𝑗
) ∈ R𝑛𝑗+1

.

Using (6), it is immediate that the class of SOCPs includes the class of LPs as
a special case: the standard form LP can be formulated as the following SOCP:
inf 𝑐⊤𝑥 s.t. ∥𝐴𝑥 − 𝑏∥2 ≤ 0, ∥0𝑥 − 0∥2 ≤ 𝑒⊤

𝑖
𝑥 for 𝑖 = 1, ..., 𝑛.

3. Semidefinite Programming (SDP) By taking 𝐸 = 𝑆𝑛 , 𝐾 = 𝑆𝑛+ ,
𝑋 •𝑌 = tr(𝑋⊤𝑌 ) for 𝑋,𝑌 ∈ 𝐸, Problem (P) becomes
inf 𝐶 • 𝑋 s.t. 𝐴𝑖 • 𝑋 = 𝑏𝑖 for 𝑖 = 1, ..., 𝑚, 𝑋 ∈ 𝑆𝑛+ , (SDP)
(𝑆𝑛+ )∗ = 𝑆𝑛+ , Problem (D) becomes
sup 𝑏⊤𝑦 s.t.

∑𝑚
𝑖=1 𝑦𝑖𝐴𝑖 + 𝑆 = 𝐶, 𝑦 ∈ R𝑚 , ; 𝑆 ∈ 𝑆𝑛+ . (SDD)

Theorem 1 (CLP Weak Duality) Let �̄� ∈ 𝐾 be feasible for (P) and
( �̄�, 𝑠) ∈ R𝑚 × 𝐾∗ be feasible for (D). Then, 𝑏⊤ �̄� ≤ 𝑐 • �̄�.
Farkas-type lemma for the following conic linear systems: (I) 𝑎𝑖 • 𝑥 =
𝑏𝑖 for 𝑖 = 1, . . . , 𝑚, 𝑥 ∈ 𝐾.
(II) − ∑𝑚

𝑖=1 𝑦𝑖𝑎𝑖 ∈ 𝐾
∗ , 𝑏⊤𝑦 > 0.

where 𝐸 is a finite-dimensional Euclidean space equipped with inner product
•, 𝐾 ⊆ 𝐸 is a closed pointed cone with non-empty interior.
It is straightforward to show that (I) and (II) cannot both have solutions.
Proof: Suppose that �̄� ∈ 𝐸 is a solution to (I) and �̄� ∈ R𝑚 is a solution to (II).
Then, we have 0 < 𝑏⊤𝑦 =

∑𝑚
𝑖=1 𝑦𝑖 (𝑎𝑖 • 𝑥 ) = −

(
−∑𝑚

𝑖=1 𝑦𝑖𝑎𝑖
)
• 𝑥 ≤ 0,

which is a contradiction. □
Example 3 (“Failure” of the Conic Farkas Lemma) Let 𝐸 = 𝑆2 and

𝐾 = 𝑆2
+ . Define 𝐴1 =

[
1 0
0 0

]
, 𝐴2 =

[
0 1
1 0

]
, 𝑏 =

[
0
2

]
.

Consider the following systems: (I) 𝐴1 •𝑋 = 𝑏1 , 𝐴2 •𝑋 = 𝑏2 , 𝑋 ∈ 𝑆2
+ .

(II) − (𝑦1𝐴1 + 𝑦2𝐴2 ) ∈ 𝑆2
+ , 𝑏

⊤𝑦 > 0.
Observe that (I) is equivalent to 𝑋11 = 0, 𝑋12 = 1, 𝑋 ∈ 𝑆2

+

and (II) is equivalent to −
[
𝑦1 𝑦2
𝑦2 0

]
∈ 𝑆2

+ , 𝑦2 > 0, both insolvable.

Why a Farkas-type lemma need not hold for the systems (I) and (II):
(1) In the proof of Farkas’ lemma for linear systems, we show that the set
𝑆 = {𝐴𝑥 ∈ R𝑚 : 𝑥 ∈ R𝑛+ } is closed and convex, so that we can apply the
separation theorem to {𝑏} and 𝑆 if system (A) is insolvable.
(2) For a general closed pointed cone 𝐾 , the set 𝑆′ = { (𝑎1 • 𝑥, . . . , 𝑎𝑚 •
𝑥 ) ∈ R𝑚 : 𝑥 ∈ 𝐾 } need not be closed. In the setting of Example 3, we
have 𝑆′ = { (𝐴1 • 𝑋, 𝐴2 • 𝑋) : 𝑋 ∈ 𝑆2

+ } = { (𝑋11 , 2𝑋12 ) : 𝑋 ∈ 𝑆2
+ }.

Since 𝑋 ∈ 𝑆2
+ iff all of its principal minors are non-negative,

𝑆′ = { (0, 0) } ∪ { (𝑥, 𝑦) : 𝑥 > 0, 𝑦 ∈ R} ⊂ R2 , clearly not closed.
Note: We used the fact: Principal minor characterization:
1. If 𝑋 ⪰ 0, then 𝑋𝑖𝑖 ≥ 0 ∀𝑖; 2. If 𝑋 ⪰ 0, 𝑋𝑖𝑖 = 0 ⇒ 𝑋𝑖 𝑗 = 0 ∀ 𝑗;

3. 𝑆 =

[
𝑎 𝑏
𝑏 𝑐

]
⪰ 0 ⇐⇒ 𝑎, 𝑐 ≥ 0; det(𝑆) ≥ 0

Theorem 2 (Conic Farkas’ Lemma) Let 𝐸 be a finite-dimensional Euclidean
space equipped with an inner product •,𝐾 ⊆ 𝐸 be a closed pointed cone with
non-empty interior, and 𝑎1 , . . . , 𝑎𝑚 ∈ 𝐸 and 𝑏 ∈ R𝑚 be given vectors.
Suppose that the Slater condition holds; i.e., there exists a �̄� ∈ R𝑚 such that
−∑𝑚

𝑖=1 �̄�𝑖𝑎𝑖 ∈ int(𝐾∗ ) . Note that �̄� need not satisfy 𝑏⊤ �̄� > 0. Then,
exactly one of the systems (I) and (II) has a solution.
Theorem 3 (CLP Strong Duality)
(a) Suppose that (P) is bounded below and strictly feasible; i.e., there exists a
feasible solution �̄� to (P) such that �̄� ∈ int(𝐾 ) . Then, 𝑣∗𝑝 = 𝑣∗

𝑑
. Moreover,

there exists a feasible solution ( �̄�, 𝑠) to (D) such that 𝑏⊤ �̄� = 𝑣∗𝑝 = 𝑣∗
𝑑

; i.e.,
the common optimal value is attained by some dual feasible solution.
(b) Suppose that (D) is bounded above and strictly feasible; i.e., there exists
a feasible solution ( �̄�, 𝑠) to (D) such that 𝑠 = 𝑐 − ∑𝑚

𝑖=1 �̄�𝑖𝑎𝑖 ∈ int(𝐾∗ ) .
Then, 𝑣∗𝑝 = 𝑣∗

𝑑
. Moreover, there exists a feasible solution �̄� to (P) such that

𝑐 • �̄� = 𝑣∗𝑝 = 𝑣∗
𝑑

; i.e., the common optimal value is attained by some primal
feasible solution.
(c) Suppose that either (P) or (D) is bounded and strictly feasible. Then, given
a feasible solution �̄� to (P) and a feasible solution ( �̄�, 𝑠) to (D), the following
are equivalent:
• �̄� and ( �̄�, 𝑠) are optimal for (P) and (D), respectively.
• The duality gap is zero; i.e., 𝑐 • �̄� = 𝑏⊤ �̄�.
• Complementary slackness: i.e., �̄� • 𝑠= �̄� • (𝑐 − ∑𝑚

𝑖=1 �̄�𝑖𝑎𝑖 ) = 0.
Compare with LP: whenever one of (P) or (D) is bounded and feasible, then
(i) the optimal value 𝑣∗𝑝 of (P) and the optimal value 𝑣∗

𝑑
of (D) are equal, and

(ii) there exists a primal feasible solution �̄� and a dual feasible solution ( �̄�, 𝑠)



such that 𝑐⊤ �̄� = 𝑣∗𝑝 = 𝑣∗
𝑑
= 𝑏⊤ �̄�.

Primal and dual attainment of the common optimal value is implied by the
boundedness and feasibility of either the primal or the dual LP problem.
Example 4 (Pathologies in Conic Duality)
1. Both the primal problem (P) and the dual problem (D) are both bounded
and feasible, but the duality gap is non-zero. Consider the SDP

inf 𝑋12 s.t. 𝑋 =

[ 0 𝑋12 0
𝑋12 𝑋22 0

0 0 1 + 𝑋12

]
∈ 𝑆3

+ . (10)

It is a routine exercise to show that the dual of (10) is given by

sup 𝑦4 s.t. 𝑆 =


−𝑦1

1+𝑦4
2 − 𝑦2

2
1+𝑦4

2 0 − 𝑦3
2

− 𝑦2
2 − 𝑦3

2 −𝑦4

 ∈ 𝑆3
+ . (11)

Since 𝑋 ∈ 𝑆3
+ , we must have 𝑋12 = 0, which implies that the optimal value

of (10) is 0. Similarly, since 𝑆 ∈ 𝑆3
+ , we must have (1 + 𝑦4 )/2 = 0, or

equivalently, 𝑦4 = −1. Hence, the optimal value of (11) is -1.
𝑋 rank at most 2, violates Slater (need pd: full rank), but has attainment.
2. The primal problem (P) is bounded below and strictly feasible, but the
optimal value is not attained by any primal feasible solution (attained by (D)).
Consider the SOCP: inf 𝑥1 s.t. (𝑥1 + 𝑥2 , 1, 𝑥1 − 𝑥2 ) ∈ 𝑄3 . (12)
Note that the constraint in (12) is equivalent to 𝑥1 + 𝑥2 ≥

√︁
1 + (𝑥1 − 𝑥2 )2 ,

which in turn is equivalent to 4𝑥1𝑥2 ≥ 1, 𝑥1 + 𝑥2 > 0. (13)
By (13), we see that the optimal value of (12) is bounded below by 0. More-
over, for 𝑥1 = 𝑥2 = 1, we have (2, 1, 0) ∈ int(𝑄3 ) , which implies
that (12) is strictly feasible. Now, by setting 𝑥1 = 1/(4𝑥2 ) and letting
𝑥2 → ∞, we see that the optimal value of (12) is 0. However, such an
optimal value is not attained by any feasible solution to (12). Dual of (12):
sup −𝑦2 s.t. 𝑦1 + 𝑦3 = 1, 𝑦1 − 𝑦3 = 0, (𝑦1 , 𝑦2 , 𝑦3 ) ∈ 𝑄3 . (14)
The feasible set of (14) is { (1/2, 0, 1/2) }, which shows that the optimal
value of (14) is 0. However, it is clear that (14) is not strictly feasible i.e.,
violates Slater condition, that’s why not attained by (P).

5.3 Some Applications of Conic Linear Programming
5.3.1 Robust Linear Programming
Consider the LP min �̄�⊤𝑥 s.t. �̂�𝑥 ≤ �̂� (1) ,
where �̂� ∈ R𝑚×𝑛 , �̂� ∈ R𝑚 , and �̄� ∈ R𝑛 are given. The data of the above
LP �̂� and �̂� are uncertain. In the robust optimization setting, we assume the
uncertain data lie in some given uncertainty set U. Rewrite (1) as:
min 𝑐⊤𝑧 s.t. 𝐴𝑧 ≤ 0, 𝑧𝑛+1 = −1, (2)
where 𝐴 = [ �̂� �̂�] ∈ R𝑚×(𝑛+1) , 𝑐 = (�̄�, 0) ∈ R𝑛+1 , and 𝑧 ∈ R𝑛+1 .
Now, suppose that each row 𝑎𝑖 ∈ R𝑛+1 of the matrix 𝐴 lies in an ellipsoidal
region U𝑖 whose center 𝑢𝑖 ∈ R𝑛+1 is given (here, 𝑖 = 1, . . . , 𝑚).
𝑎𝑖 ∈ U𝑖 =

{
𝑥 ∈ R𝑛+1 : 𝑥 = 𝑢𝑖 + 𝐵𝑖𝑣, ∥𝑣 ∥2 ≤ 1

}
for 𝑖 = 1, . . . , 𝑚,

where 𝑎𝑖 is the 𝑖-th row of 𝐴, 𝑢𝑖 ∈ R𝑛+1 is the center of the ellipsoid U𝑖 ,
and 𝐵𝑖 is some (𝑛 + 1) × (𝑛 + 1) positive semidefinite matrix. Then, (2) is:
min 𝑐⊤𝑧 s.t. 𝐴𝑧 ≤ 0 ∀𝑎𝑖 ∈ U𝑖 , 𝑖 = 1, ..., 𝑚, 𝑧𝑛+1 = −1. (3)
We claim (3) is equivalent to an SOCP problem: observe that 𝑎⊤

𝑖
𝑧 ≤ 0 for all

𝑎𝑖 ∈ U𝑖 iff 0 ≥ max
𝑣∈R𝑛+1:∥𝑣∥2≤1 { (𝑢𝑖+𝐵𝑖𝑣)

⊤𝑧} = 𝑢⊤
𝑖
𝑧+∥𝐵𝑖 𝑧 ∥2 ,

where 𝑖 = 1, . . . , 𝑚. Hence, we conclude that (3) is equivalent to
min 𝑐⊤𝑧 s.t. ∥𝐵𝑖 𝑧 ∥2 ≤ −𝑢⊤

𝑖
𝑧 for 𝑖 = 1, . . . , 𝑚, 𝑧𝑛+1 = −1.

5.3.2 Chance Constrained Linear Programming
min 𝑐⊤𝑥 s.t. 𝑎⊤𝑥 ≤ 𝑏, 𝑥 ∈ 𝑃, (4)
where 𝑎, 𝑐 ∈ R𝑛 , 𝑏 ∈ R are given, and 𝑃 ⊆ R𝑛 is a given polyhedron.
Suppose 𝑃 is deterministic, but data 𝑎, 𝑏 are randomly affinely perturbed;
i.e., 𝑎 = 𝑎0 + ∑𝑙

𝑖=1 𝜖𝑖𝑎
𝑖 , 𝑏 = 𝑏0 + ∑𝑙

𝑖=1 𝜖𝑖𝑏𝑖 ,

where 𝑎0 , 𝑎1 , ..., 𝑎𝑙 ∈ R𝑛 and 𝑏0 , 𝑏1 , ..., 𝑏𝑙 ∈ R are given, and
𝜖1 , ..., 𝜖𝑙 are i.i.d. mean zero r.v.s supported on [−1, 1]. Then, for any
given tolerance parameter 𝛿 ∈ (0, 1) , we can formulate the following:
min 𝑐⊤𝑥 s.t. Pr(𝑎⊤𝑥 > 𝑏) ≤ 𝛿 (†) , 𝑥 ∈ 𝑃. (5)
In other words, a solution �̄� ∈ 𝑃 is feasible for (5) if it only violates the
constraint 𝑎⊤𝑥 ≤ 𝑏 with probability at most 𝛿. The constraint (†) is known
as a chance constraint. Note that when 𝛿 = 0, (5) reduces to a robust lin-
ear optimization problem. Moreover, if �̄� ∈ R𝑛 is feasible for (5) at some
tolerance level 𝛿 ≥ 0, then it is also feasible for (5) at any 𝛿 ≥ 𝛿.
Indeed, even when the distributions of 𝜖1 , . . . , 𝜖𝑙 are very simple, the feasible
set defined by the chance constraint (†) can be non-convex. One way to tackle
this problem is to replace the chance constraint by its safe tractable approxi-
mation; i.e., a system of deterministic constraints H such that (i) �̄� ∈ R𝑛 is
feasible for (†) whenever it is feasible for H (safe approximation), and (ii) the
constraints in H are efficiently computable (tractability).
We first observe that (†) is equivalent to the following system of constraints:
Pr

(
𝑦0 + ∑𝑙

𝑖=1 𝜖𝑖 𝑦𝑖 > 0
)
≤ 𝛿, (6)

𝑦𝑖 = (𝑎𝑖 )⊤𝑥 − 𝑏𝑖 for 𝑖 = 0, 1, . . . , 𝑙. (7)
Since 𝜖1 , . . . , 𝜖𝑙 are i.i.d. mean zero random variables supported on [−1, 1],
by Hoeffding’s inequality, we have

Pr
(∑𝑙
𝑖=1 𝜖𝑖 𝑦𝑖 > 𝑡

)
≤ exp

(
− 𝑡2

2
∑𝑙
𝑖=1 𝑦

2
𝑖

)
for any 𝑡 > 0.

It follows that when −𝑦0 ≥
√︃
(2 ln 1

𝛿
) ∑𝑙
𝑖=1 𝑦

2
𝑖
, (8) we have

Pr
(
𝑦0 + ∑𝑙

𝑖=1 𝜖𝑖 𝑦𝑖 > 0
)
≤ exp

(
−

𝑦2
0

2
∑𝑙
𝑖=1 𝑦

2
𝑖

)
≤ 𝛿.

In other words, (8) is a sufficient condition for (6) to hold. The upshot of (8) is
that it is a SOC constraint. Hence, we conclude constraints (7) and (8) together
serve as a safe tractable approximation of the chance constraint (†) .
Constraint (8) is equivalent to the following robust constraint:
𝑑⊤𝑦 ≤ 0 for all 𝑑 ∈ U, where U is the ellipsoidal uncertainty set given by
U =

{
𝑥 ∈ R𝑙+1 : 𝑥 = 𝑒1 + 𝐵𝑣, ∥𝑣 ∥2 ≤ 1

}
, and 𝐵 ∈ R(𝑙+1)×(𝑙+1) is

given by 𝐵 =

√︃
2 ln 1

𝛿
·
[
0 0⊤
0 𝐼

]
.

In other words, we are using the following robust optimization problem
min 𝑐⊤𝑥 s.t.

∑𝑙
𝑖=0 𝑑𝑖

(
(𝑎𝑖 )⊤𝑥 − 𝑏𝑖

)
≤ 0 for all 𝑑 ∈ U, 𝑥 ∈ 𝑃

as a safe tractable approximation of the problem (5).
5.3.3 Quadratically Constrained Quadratic Optimization
min 𝑥⊤𝐶𝑥 s.t. 𝑥⊤𝐴𝑖 𝑥 ≥ 𝑏𝑖 for 𝑖 = 1, . . . , 𝑚, (9)
where 𝐶, 𝐴1 , ..., 𝐴𝑚 ∈ 𝑆𝑛 are given. We first observe for any 𝐶 ∈ 𝑆𝑛 ,
𝑥⊤𝐶𝑥 = tr(𝑥⊤𝐶𝑥 ) = tr(𝐶𝑥𝑥⊤ ) = 𝐶 • 𝑥𝑥⊤ . Hence, (9) is equivalent to
min 𝐶 • 𝑥𝑥⊤ s.t. 𝐴𝑖 • 𝑥𝑥⊤ ≥ 𝑏𝑖 for 𝑖 = 1, ..., 𝑚.
Now, using the spectral theorem for symmetric matrices, one can verify that
𝑋 = 𝑥𝑥⊤ ⇐⇒ 𝑋 ⪰ 0, rank(𝑋) ≤ 1.
Reason: (1) ∀𝑢 ∈ R𝑛 : 𝑢⊤𝑋𝑢 = 𝑢⊤𝑥𝑥⊤𝑢 = ∥𝑥⊤𝑢∥2

2 ≥ 0.
(2) Every row of 𝑋 is multiple of every other row.
It follows that problem (9) is equivalent to the following rank-constrained SDP:
min 𝐶 • 𝑋
s.t. 𝐴𝑖 • 𝑋 ≥ 𝑏𝑖 for 𝑖 = 1, ..., 𝑚, 𝑋 ⪰ 0, rank(𝑋) ≤ 1. (10)

It reveals where the difficulty of the problem lies; namely, in the non-convex
constraint rank(𝑋) ≤ 1. By dropping this constraint, we obtain the following
semidefinite relaxation of problem (9):
min 𝐶 • 𝑋 s.t. 𝐴𝑖 • 𝑋 ≥ 𝑏𝑖 for 𝑖 = 1, ..., 𝑚, 𝑋 ⪰ 0. (11)
Problem (11) is an SDP and can be efficiently solved. However, an optimal
solution 𝑋∗ to problem (11) may not be feasible for problem (9).
5.3.4 An Approximation Algorithm for Maximum Cut in Graphs
Suppose that we are given a simple undirected graph 𝐺 = (𝑉, 𝐸 ) and a
function𝑤 : 𝐸 → R+ that assigns to each edge 𝑒 ∈ 𝐸 a non-negative weight
𝑤𝑒 . The Maximum Cut Problem (Max-Cut) is that of finding a set 𝑆 ⊆ 𝑉
of vertices such that the total weight of the edges in the cut (𝑆, 𝑉 \ 𝑆) ; i.e.,
sum of the weights of the edges with one endpoint in 𝑆 and the other in𝑉 \ 𝑆,
is maximized. By setting 𝑤𝑖 𝑗 = 0 if (𝑖, 𝑗 ) ∉ 𝐸, we may denote the weight
of a cut (𝑆, 𝑉 \ 𝑆) by 𝑤 (𝑆, 𝑉 \ 𝑆) = ∑

𝑖∈𝑆, 𝑗∈𝑉\𝑆 𝑤𝑖 𝑗 , (15) and our
goal is to choose a set 𝑆 ⊆ 𝑉 such that the quantity in (15) is maximized.
Let (𝐺, 𝑤) be a given instance of the Max-Cut problem, with 𝑛 = |𝑉 | .
Then, we can formulate the problem as an integer quadratic program: 𝑣∗ =

max 1
2

∑
(𝑖, 𝑗) ∈𝐸 𝑤𝑖 𝑗 (1 − 𝑥𝑖 𝑥 𝑗 ) s.t. 𝑥2

𝑖
= 1 for 𝑖 = 1, . . . , 𝑛. (16)

Here, the variable 𝑥𝑖 indicates which side of the cut vertex 𝑖 belongs to. Note
that if vertices 𝑖 and 𝑗 belong to the same side of a cut, then 𝑥𝑖 = 𝑥 𝑗 , and
hence its contribution to the objective function in (16) is zero. Otherwise, its
contribution to the objective function is 𝑤𝑖 𝑗 (1 − (−1) )/2 = 𝑤𝑖 𝑗 .
If let 𝑋 = 𝑥𝑥⊤ ∈ R𝑛×𝑛 , then problem (16) arrive at following relaxation:
𝑣∗
𝑠𝑑𝑝

= max 1
2

∑
(𝑖, 𝑗) ∈𝐸 𝑤𝑖 𝑗 (1 − 𝑋𝑖 𝑗 )

s.t. diag(𝑋) = 𝑒, 𝑋 ⪰ 0. (18) . Note that (18) is an SDP. 𝑣∗
𝑠𝑑𝑝

≥ 𝑣∗ .

5.4 Example Problems
1. Let 𝐴 ∈ 𝑆𝑛 be given. Consider the following QCQP:

min 𝑥⊤𝐴𝑥 s.t. 𝑥2
𝑖
= 1 for 𝑖 = 1, ..., 𝑛.

(a) Derive the semidefinite relaxation of Problem.
(b) Write down the dual of the semidefinite relaxation. Does the primal-
dual pair of SDPs you obtained have zero duality gap?
(c) The Lagrangian dual is sup𝑤∈R𝑛 𝜃 (𝑤) , where

𝜃 (𝑤) = inf𝑥∈R𝑛
{
𝑥⊤𝐴𝑥 + ∑𝑛

𝑖=1 𝑤𝑖 (1 − 𝑥2
𝑖
)
}
.

Find expression for 𝜃 (𝑤) . Hence, or otherwise, show that Lagrangian
dual is equivalent to the dual of the semidefinite relaxation found in (b).
A: (a) The semidefinite relaxation of the given QCQP is given by:
inf 𝐴 • 𝑋 s.t. 𝑋𝑖𝑖 = 1 for 𝑖 = 1, ..., 𝑛, 𝑋 ⪰ 0.
(b) The dual of (SDR) is given by: sup 𝑒⊤𝑦 s.t. 𝐴− Diag(𝑦) ⪰ 0.
Note that �̄� = 𝐼 is strictly feasible for (SDR). It follows from the CLP
strong duality theorem that the duality gap between (SDR) and (SDD) is
zero.
(c) 𝜃 (𝑤) = 𝑒⊤𝑤 + inf𝑥∈R𝑛

{
𝑥⊤ (𝐴 − Diag(𝑤) )𝑥

}
.

For any given 𝑤 ∈ R𝑛 , we claim that

inf𝑥∈R𝑛
{
𝑥⊤ (𝐴 − Diag(𝑤) )𝑥

}
=

{
0 if 𝐴 − Diag(𝑤) ⪰ 0,
−∞ otherwise.

Indeed, if 𝐴 − Diag(𝑤) ⪰̸ 0, then 𝜆min (𝐴 − Diag(𝑤) ) < 0.
Let 𝑢 ∈ R𝑛 be the unit eigenvector corresponding to the small-
est eigenvalue of 𝐴 − Diag(𝑤) . Then, as 𝛼 ↑ +∞, we have
(𝛼𝑢)⊤ (𝐴 − Diag(𝑤) ) (𝛼𝑢) = 𝛼2𝜆min (𝐴 − Diag(𝑤) ) → −∞,
implies inf𝑥∈R𝑛

{
𝑥⊤ (𝐴 − Diag(𝑤) )𝑥

}
= −∞.

On the other hand, if 𝐴 − Diag(𝑤) ⪰ 0, then 𝑥⊤ (𝐴 −
Diag(𝑤) )𝑥 ≥ 0 for any 𝑥 ∈ R𝑛 . In particular, we have
inf𝑥∈R𝑛

{
𝑥⊤ (𝐴 − Diag(𝑤) )𝑥

}
= 0.

Consequently, the Lagrangian dual is ⇔ sup 𝑒⊤𝑤 s.t. 𝐴 −
Diag(𝑤) ⪰ 0.

2. Consider the following SDP: inf 𝑋11 s.t.
[
𝑋11 1

1 𝑋22

]
⪰ 0.

A: (a) inf 𝐶 • 𝑋 s.t. 𝐴 • 𝑋 = 2, 𝑋 ⪰ 0, where

𝐶 =

[
1 0
0 0

]
, 𝐴 =

[
0 1
1 0

]
, 𝑋 =

[
𝑋11 𝑋12
𝑋12 𝑋22

]
.

Hence, the dual (D) is given by: sup 2𝑦 s.t. 𝑆 =

[
1 −𝑦
−𝑦 0

]
⪰ 0.

(b) A necessary condition for 𝑆 ⪰ 0 is det(𝑆) ≥ 0; i.e. 𝑦2 ≤ 0.
Thus, 𝑦 = 0 is the only feasible solution to (D), which implies the optimal
value of (D) (and hence of (P)) is 0. The dual optimal value is attained
by 𝑦 = 0. On the other hand, the primal optimal value is not attained.
Indeed, the feasible set of (P) is given by {𝑋 ∈ 𝑆2 : 𝑋11 ≥ 0, 𝑋22 ≥

0, 𝑋11𝑋22 ≥ 1}, which implies 𝑋 (𝜖 ) =
[
𝜖 1
1 𝜖 −1

]
is feasible for

(P) for any 𝜖 > 0. However, any point 𝑋 ∈ 𝑆2 with 𝑋11 = 0 is not
feasible for (P).
21Q5.
min
𝑥∈R𝑛

𝑐⊤𝑥 s.t. 𝑑⊤𝑖 𝑥 ≤ ℓ𝑖 , 𝑖 = 1, ..., 𝑚, 𝑓⊤𝑗 𝑥 = 𝑔 𝑗 , 𝑗 = 1, ..., 𝑝,

𝑥𝑖 ≥ 0, 𝑖 = 1, ..., 𝑛.
𝑐 ∈ R𝑛 is a positive vector, 𝑑𝑖 ∈ R𝑛 and 𝑓 𝑗 ∈ R𝑛 are non-negative
vectors.
(a) Write down the KKT conditions for the above problem.
(b) Suppose

∑𝑝
𝑗=1 ∥ 𝑓 𝑗 ∥0 ≤ �̄� ≤ 𝑛, where ∥ 𝑓 𝑗 ∥0 counts the number of

non-zero elements in the vector 𝑓 𝑗 . Show that there must exist an optimal
solution 𝑥∗ s.t. ∥𝑥∗ ∥0 ≤ �̄�.

A: (a) DF: 𝑐 + ∑𝑚
𝑖=1 𝑢𝑖𝑑𝑖 +

∑𝑝
𝑗=1 𝑤 𝑗 𝑓 𝑗 +

∑𝑛
𝑘=1 𝑣𝑘 (−𝑒𝑘 ) = 0;

𝑢 ∈ R𝑚+ , 𝑣 ∈ R𝑛+ .
CS: 𝑣𝑖 (𝑑⊤𝑖 �̄� − ℓ𝑖 ) = 0 ∀𝑖 = 1, ..., 𝑚; 𝑢𝑘 �̄�𝑘 = 0 ∀𝑘 = 1, ..., 𝑛.
(b) KKT necessary by (3), sufficient.
By the KKT condition, we know

∑𝑝
𝑗=1 𝑤 𝑗 𝑓 𝑗 = 𝑢 − ∑𝑚

𝑖=1 𝑣𝑖𝑑𝑖 − 𝑐.

Then



𝑢 − ∑𝑚

𝑖=1 𝑣𝑖𝑑𝑖 − 𝑐





0
≤ �̄� ≤ 𝑛. Since 𝑢 ∈ R𝑛+ ,

𝑑𝑖 ≥ 0, ∀𝑖, 𝑐 > 0, then as 𝑐 + ∑𝑚
𝑖=1 𝑣𝑖𝑑𝑖 is positive, then


𝑢 − ∑𝑚

𝑖=1 𝑣𝑖𝑑𝑖 − 𝑐





0
≥ 𝑛 − ∥𝑢∥0(this is because at least the ze-

ros of 𝑢 will become non-zero ). Thus ∥𝑢∥0 ≥ 𝑛 − �̄�. Then by the KKT
condition that 𝑢𝑘 𝑥∗𝑘 = 0, 𝑘 = 1, ..., 𝑛, we know that ∥𝑥∗ ∥0 ≤ �̄�.

3. 19Q4. Show (P) has a unique optimal solution 𝑥∗ that is non-degenerate,
then (D) also has a unique optimal solution 𝑦∗ that is non-degenerate.
A: non-degenerate ⇒ x∗ has positive feasible variables (exactly 𝑛 − 𝑚
zeros).
WLOG, assume x∗ = (𝑥1 , . . . , 𝑥𝑚 , 𝑥𝑚+1 , . . . , 𝑥𝑛 ) . It follows that
rows of 𝐴 are independent by definition of non-degenerate. By Comple-
mentary Slackness Theorem,[
𝐶𝑖 − (A⊤y)𝑖

]
= 0 for 𝑖 = 1, ..., 𝑚;

[
𝐶 𝑗 − (A⊤y) 𝑗

]
≥ 0 for 𝑗 =

𝑚 + 1, ..., 𝑛.

Let A =
[
A𝐵 A𝑁

]
, A⊤y =

[
A⊤
𝐵

y
A⊤
𝑁

y

]
= c𝐵
≤ c𝑁

, Since A𝐵 is invert-

ible, y is uniquely determined by (A⊤
𝐵
)−1c𝐵 . y has exactly 𝑚 linearly

independent active constraints (from
4. 𝑋 = { (𝑡 , 𝑥1 , 𝑥2 ) ∈ R × R × R : 𝑥1 , 𝑥2 ≥ 0, 𝑡 ≤ √

𝑥1𝑥2 } SOC-
representable.
A: Although 𝑡 is not necessarily non-negative, observe that 𝑡 ≤√
𝑥1𝑥2 ⇔ 𝑡 ≤ 𝜏, 0 ≤ 𝑡 ≤ √

𝑥1𝑥2 ⇔ 𝑡 ≤ 𝜏, 𝜏 ≥ 0, 𝜏2 ≤
(𝑥1+𝑥2 )2

4 − (𝑥1−𝑥2 )2
4

⇔ 𝑡 ≤ 𝜏, 𝜏 ≥ 0,






(1 0 0
0 1

2 − 1
2

) (
𝜏
𝑥1
𝑥2

)





2
≤ 𝑥1+𝑥2

2 ⇔

5. The goal is to prove a theorem of alternatives for linear matrix inequal-
ity systems. Let 𝐴1 , ..., 𝐴𝑚 ∈ 𝑆𝑛 and 𝑏 ∈ R𝑚 be given. Suppose
𝐶 = { (𝐴1 • 𝑋, ..., 𝐴𝑚 • 𝑋) : 𝑋 ⪰ 0} ⊆ R𝑚 is closed. Show that
exactly one of the following systems has a solution:

(I)
{
𝐴𝑖 • 𝑋 = 𝑏𝑖 for 𝑖 = 1, ..., 𝑚,
𝑋 ⪰ 0.

(II)
{ ∑𝑚

𝑖=1 𝑦𝑖𝐴𝑖 ⪰ 0,
𝑏⊤𝑦 = −1.

A: We first show systems (I) and (II) cannot simultaneously have so-
lutions. Suppose not the case. Then, exist a matrix �̄� ∈ 𝑆𝑛 and a
vector �̄� ∈ R𝑚 satisfying (I) and (II), respectively. This implies that
0 ≤

(∑𝑚
𝑖=1 �̄�𝑖𝐴𝑖

)
• �̄� (since �̄� ⪰ 0 and

∑𝑚
𝑖=1 �̄�𝑖𝐴𝑖 ⪰ 0)

=
∑𝑚
𝑖=1 �̄�𝑖 (𝐴𝑖 • �̄�) =

∑𝑚
𝑖=1 �̄�𝑖𝑏𝑖 = −1 (since 𝑏⊤ �̄� = −1) contra-

diction.
Now, suppose that system (I) does not have a solution. Then, we have
𝑏 ∉ 𝐶 . Clearly, the set 𝐶 is non-empty and convex, and by assumption
it is closed as well. Hence, by Separation theorem, there exists a vector
𝑠 ∈ R𝑚 such that sup𝑧∈𝐶 𝑠⊤𝑧 < 𝑠⊤𝑏.
We claim sup𝑧∈𝐶 𝑠⊤𝑧 = 0. Indeed, since 0 ∈ 𝐶 , we have
sup𝑧∈𝐶 𝑠⊤𝑧 ≥ 0. Suppose sup𝑧∈𝐶 𝑠⊤𝑧 > 0. Then, there ex-
ists a matrix 𝑋′ ⪰ 0 s.t.

∑𝑚
𝑖=1 𝑠𝑖 (𝐴𝑖 • 𝑋

′ ) > 0. In particular, for
any 𝛼 > 0, we have 𝛼𝑋′ ⪰ 0 and 0 < 𝛼

∑𝑚
𝑖=1 𝑠𝑖 (𝐴𝑖 • 𝑋

′ ) =∑𝑚
𝑖=1 𝑠𝑖 (𝐴𝑖 • (𝛼𝑋′ ) ) ≤ sup𝑧∈𝐶 𝑠⊤𝑧 < 𝑠⊤𝑏. However, since 𝑠⊤𝑏

is a constant, the above inequality cannot hold for all values of 𝛼. This
contradiction shows that sup𝑧∈𝐶 𝑠⊤𝑧 ≤ 0, and hence the claim is estab-
lished. As a corollary of the claim, we have 𝑠⊤𝑏 > 0. Thus, the vector
�̄� = −𝑠/𝑠⊤𝑏 ∈ R𝑚 is well defined. It is immediate that 𝑏⊤ �̄� = −1.
Moreover, the claim implies

(∑𝑚
𝑖=1 �̄�𝑖𝐴𝑖

)
•𝑋 ≥ 0 for all𝑋 ⪰ 0,which,

by self-duality of 𝑆𝑛+ , is equivalent to
∑𝑚
𝑖=1 �̄�𝑖𝐴𝑖 ⪰ 0. This shows �̄� is

a solution to (II).

6 Optimality Conditions and Lagrangian Duality
6.1 Introduction
Consider a univariate, twice continuously differentiable function 𝑓 : R → R.
If �̄� ∈ R is a local minimum of 𝑓 , then we must have 𝑑 𝑓 (𝑥)

𝑑𝑥

���
𝑥=�̄�

= 0,
this is a necessary condition for �̄� to be a local minimum. In addition,
𝑑2 𝑓 (𝑥)
𝑑𝑥2

����
𝑥=�̄�

> 0 is a sufficient condition for �̄� to be a local minimum.

Theorem 1 (Taylor’s Theorem) Let 𝑎, 𝑏 ∈ R be such that 𝑎 < 𝑏 and let
𝑛 ≥ 1 be an integer. Suppose that the function 𝑓 : [𝑎, 𝑏] → R satisfies:
1. 𝑓 (𝑛−1) is continuous on [𝑎, 𝑏],
2. 𝑓 (𝑛) (𝑡 ) exists for every 𝑡 ∈ (𝑎, 𝑏) .

Let 𝑎 ≤ 𝑡1 < 𝑡2 ≤ 𝑏, and define 𝑃 (𝑡 ) = ∑𝑛−1
𝑗=0

𝑓 ( 𝑗) (𝑡1 )
𝑗! (𝑡 − 𝑡1 ) 𝑗 .

Then, ∃𝑡0 ∈ [𝑡1 , 𝑡2 ] such that 𝑓 (𝑡2 ) = 𝑃 (𝑡2 ) +
𝑓 (𝑛) (𝑡0 )
𝑛! (𝑡2 − 𝑡1 )𝑛 .

6.2 Unconstrained Optimization Problems
Proposition 1 Suppose that 𝑓 : R𝑛 → R is continuously differentiable at
�̄� ∈ R𝑛 . If there exists a 𝑑 ∈ R𝑛 such that ∇ 𝑓 ( �̄� )⊤𝑑 < 0, then there exists
an 𝛼0 > 0 such that 𝑓 ( �̄� + 𝛼𝑑) < 𝑓 ( �̄� ) for all 𝛼 ∈ (0, 𝛼0 ) . In other
words, 𝑑 is a descent direction of 𝑓 at �̄�.
Proof Since ∇ 𝑓 is continuous at �̄� ∈ R𝑛 and ∇ 𝑓 ( �̄� )⊤𝑑 < 0, there ex-
ists an 𝛼0 > 0 such that ∇ 𝑓 ( �̄� + 𝛼𝑑)⊤𝑑 < 0 for all 𝛼 ∈ [0, 𝛼0 ) .
Now, consider the function 𝑓 : R → R defined by 𝑓 (𝛼) = 𝑓 ( �̄� + 𝛼𝑑) .
By the Chain Rule, we have 𝑑 𝑓 (𝛼)

𝑑𝛼
= ∇ 𝑓 ( �̄� + 𝛼𝑑)⊤𝑑. Thus, by The-

orem 1, for any 𝛼 ∈ (0, 𝛼0 ) , there exists a 𝑡0 ∈ [0, 𝛼0 ) such that
𝑓 ( �̄� + 𝛼𝑑) = 𝑓 (𝛼) = 𝑓 (0) + 𝛼∇ 𝑓 ( �̄� + 𝑡0𝑑)⊤𝑑 < 𝑓 (0) = 𝑓 ( �̄� ) ,
as desired. □
Corollary 1 (First Order Necessary Condition for Unconstrained Op-
timization) Suppose that 𝑓 : R𝑛 → R is continuously differentiable at
�̄� ∈ R𝑛 . If �̄� is a local minimum, then we have ∇ 𝑓 ( �̄� ) = 0. In particular,
we have {𝑑 ∈ R𝑛 : ∇ 𝑓 ( �̄� )⊤𝑑 < 0} = ∅.
Proof Suppose to the contrary that ∇ 𝑓 ( �̄� ) ≠ 0. Let 𝑑 = −∇ 𝑓 ( �̄� ) . Then,
we have ∇ 𝑓 ( �̄� )⊤𝑑 = −∥∇ 𝑓 ( �̄� ) ∥2

2 < 0. Hence, by Proposition 1, there
exists an 𝛼0 > 0 such that 𝑓 ( �̄� + 𝛼𝑑) < 𝑓 ( �̄� ) for all 𝛼 ∈ (0, 𝛼0 ) , which
contradicts the fact that �̄� is a local minimum. Thus, we have ∇ 𝑓 ( �̄� ) = 0. □
Proposition 2 (Necessary and Sufficient for Convex Functions) Let 𝑆 ⊆ R𝑛

be an open convex set. Suppose 𝑓 : R𝑛 → R is convex on 𝑆 and continuously
differentiable at �̄� ∈ 𝑆. Then, �̄� is a global minimum in 𝑆 iff ∇ 𝑓 ( �̄� ) = 0.
Proof (⇒) by Corollary 1; (⇐) if ∇ 𝑓 ( �̄� ) = 0, then we have ∇ 𝑓 ( �̄� )⊤ (𝑥 −
�̄� ) = 0 for all 𝑥 ∈ 𝑆. By Handout 2 Theorem 9, 𝑓 (𝑥 ) ≥ 𝑓 ( �̄� ) ∀𝑥 ∈ 𝑆. □
Proposition 3 Let 𝑓 : R𝑛 → R be arbitrary. Then, �̄� is a global minimum
iff 0 ∈ 𝜕 𝑓 ( �̄� ) .
Proof 𝜕 𝑓 ( �̄� ) = {𝑠 ∈ R𝑛 : 𝑓 (𝑥 ) ≥ 𝑓 ( �̄� ) + 𝑠⊤ (𝑥 − �̄� )∀𝑥 ∈ R𝑛 }, �̄� is
a global minimum iff 𝑓 (𝑥 ) ≥ 𝑓 ( �̄� ) = 𝑓 ( �̄� ) + 0⊤ (𝑥 − �̄� )∀𝑥 ∈ R𝑛 . □
Note: even if 𝑓 is differentiable at �̄�, we may not have ∇ 𝑓 ( �̄� ) ∈ 𝜕 𝑓 ( �̄� ) if
𝑓 is not convex at �̄�.
Proposition 4 (Second Order Sufficient Condition for Unconstrained Op-
timization) Suppose 𝑓 : R𝑛 → R is twice continuously differentiable at
�̄� ∈ R𝑛 . If ∇ 𝑓 ( �̄� ) = 0 and ∇2 𝑓 ( �̄� ) is pd, then �̄� is a local minimum.
Proof For any 𝑑 ∈ R𝑛 such that ∥𝑑 ∥2

2 = 1, consider the function
𝑓𝑑 : R → R given by 𝑓𝑑 (𝛼) = 𝑓 ( �̄� + 𝛼𝑑) . By the Chain Rule, we have
𝑑 𝑓𝑑 (𝛼)
𝑑𝛼

= ∇ 𝑓 ( �̄� + 𝛼𝑑)⊤𝑑, 𝑑2 𝑓𝑑 (𝛼)
𝑑𝛼2 = 𝑑⊤∇2 𝑓 ( �̄� + 𝛼𝑑)𝑑. (4)

Since ∇2 𝑓 is continuous at �̄� ∈ R𝑛 and ∇2 𝑓 ( �̄� ) ≻ 0, there exists an
𝛼0 > 0 such that for all unit vectors 𝑑 ∈ R𝑛 and for all 𝛼 ∈ [0, 𝛼0 ) , we
have ∇2 𝑓 ( �̄� + 𝛼𝑑) ≻ 0. Now, suppose that �̄� is not a local minimum. Then,
there exists an �̄�′ ∈ R𝑛 such that ∥ �̄�′ − �̄� ∥2 < 𝛼0 and 𝑓 ( �̄�′ ) < 𝑓 ( �̄� ) .
Let 𝑑 = ( �̄�′ − �̄� )/∥ �̄�′ − �̄� ∥2 and 𝛼 = ∥ �̄�′ − �̄� ∥2 . Then, by (4), Theorem
1, and the fact that ∇ 𝑓 ( �̄� ) = 0, we have 𝑓 ( �̄� ) > 𝑓 ( �̄�′ ) = 𝑓 ( �̄� + 𝛼𝑑) =
𝑓𝑑 (𝛼) = 𝑓𝑑 (0) + 𝛼2

2 𝑑⊤∇2 𝑓 ( �̄� + 𝑡0𝑑)𝑑 > 𝑓𝑑 (0) = 𝑓 ( �̄� ) for some
𝑡0 ∈ (0, 𝛼0 ) , which is a contradiction. This completes the proof. □



6.3 Constrained Optimization Problems
Let 𝑓 , 𝑔1 , . . . , 𝑔𝑚1 , ℎ1 , . . . , ℎ𝑚2 : R𝑛 → R be functions that are con-
tinuously differentiable on the non-empty open subset 𝑋 of R𝑛 .

inf 𝑓 (𝑥 ) s.t. 𝑔𝑖 (𝑥 ) ≤ 0 for 𝑖 = 1, ..., 𝑚1 ,

ℎ 𝑗 (𝑥 ) = 0 for 𝑗 = 1, ..., 𝑚2 ,

𝑥 ∈ 𝑋. (5)
Let 𝑆 = {𝑥 ∈ 𝑋 : 𝑔𝑖 (𝑥 ) ≤ 0 for 𝑖 = 1, ..., 𝑚1; ℎ 𝑗 (𝑥 ) = 0 for 𝑗 =
1, ..., 𝑚2 } be the feasible region of (5).
Theorem 2 (The Fritz John Necessary Conditions) Let �̄� ∈ 𝑆 be a local
minimum of problem (5). Then, there exist 𝑢 ∈ R, 𝑣1 , . . . , 𝑣𝑚1 ∈ R, and
𝑤1 , . . . , 𝑤𝑚2 ∈ R such that

𝑢∇ 𝑓 ( �̄� ) +
𝑚1∑︁
𝑖=1
𝑣𝑖∇𝑔𝑖 ( �̄� ) +

𝑚2∑︁
𝑗=1
𝑤 𝑗∇ℎ 𝑗 ( �̄� ) = 0,

𝑢, 𝑣𝑖 ≥ 0 for 𝑖 = 1, ..., 𝑚1 ,

(𝑢, 𝑣1 , ..., 𝑣𝑚1 , 𝑤1 , ..., 𝑤𝑚2 ) ≠ 0. (6)

Furthermore, in every neighborhood N of �̄�, there exists an 𝑥′ ∈ N such that
𝑣𝑖𝑔𝑖 (𝑥′ ) > 0 for all 𝑖 ∈ {1, . . . , 𝑚1 } with 𝑣𝑖 ≠ 0, and 𝑤 𝑗ℎ 𝑗 (𝑥′ ) > 0
for all 𝑗 ∈ {1, . . . , 𝑚2 } with 𝑤 𝑗 ≠ 0. i.e., 𝑣𝑖𝑔𝑖 ( �̄� ) = 0 ∀𝑖 = 1, ..., 𝑚1
Remarks:

(a) The last statement in Theorem 2 actually implies the complementary slack-
ness condition (i.e., 𝑣𝑖𝑔𝑖 ( �̄� ) = 0 for 𝑖 = 1, . . . , 𝑚1), since if 𝑣𝑖 > 0,
then the corresponding constraint 𝑔𝑖 (𝑥 ) ≤ 0 will be violated by points
arbitrarily close to �̄�. This implies that 𝑔𝑖 ( �̄� ) = 0.

(b) In Theorem 2, the scalar 𝑣𝑖 (resp. 𝑤 𝑗 ) is usually called the
Lagrange multiplier of the corresponding constraint 𝑔𝑖 (𝑥 ) ≤ 0, where
𝑖 = 1, . . . , 𝑚1 (resp. ℎ 𝑗 (𝑥 ) = 0, where 𝑗 = 1, . . . , 𝑚2). In a fashion
reminiscent to the case of LP, we may summarize the Fritz John necessary
conditions in (6) as follows: (7)

𝑔𝑖 ( �̄� ) ≤ 0 for 𝑖 = 1, . . . , 𝑚1 , (primal feasibility I)

ℎ 𝑗 ( �̄� ) = 0 for 𝑗 = 1, . . . , 𝑚2 , (primal feasibility II)

𝑢∇ 𝑓 ( �̄� ) +
𝑚1∑︁
𝑖=1
𝑣𝑖∇𝑔𝑖 ( �̄� ) +

𝑚2∑︁
𝑗=1
𝑤 𝑗∇ℎ 𝑗 ( �̄� ) = 0, (dual feasibility I)

𝑢, 𝑣𝑖 ≥ 0 for 𝑖 = 1, . . . , 𝑚1 , (dual feasibility II)

(𝑢, 𝑣1 , . . . , 𝑣𝑚1 , 𝑤1 , . . . , 𝑤𝑚2 ) ≠ 0, (dual feasibility III)

𝑣𝑖𝑔𝑖 ( �̄� ) = 0 for 𝑖 = 1, . . . , 𝑚1 . (complementary slackness)

For any �̄� ∈ R𝑛 , if there exist Lagrange multipliers 𝑢, {𝑣𝑖 }
𝑚1
𝑖=1 , {𝑤 𝑗 }

𝑚2
𝑗=1

that solve system (7), then we say that �̄� is a Fritz John (FJ) point. An FJ
point need not be a local minimum, as the Fritz John conditions (7) are only
necessary conditions for local optimality.

Assuming 𝑢 = 1, −∇ 𝑓 ( �̄� ) = 𝑣1∇𝑔1 ( �̄� ) + 𝑣2∇𝑔2 ( �̄� ); 𝑣1 , 𝑣2 ≥ 0.
Idea: If �̄� is a local minimum, then intuitively �𝑑 s.t. 𝑑 is simultaneously a
descent direction of 𝑓 at �̄� and a feasible direction of 𝑓 at �̄�.

Note: �̄� always satisfying FJNC, although maybe not the local minimum. This
is because ∇𝑔2 and ∇𝑔3 are linearly dependent.
Theorem 3 (The Karush–Kuhn–Tucker Necessary Conditions) Let �̄� ∈ 𝑆
be a local minimum of problem (5). Let 𝐼 = {𝑖 ∈ {1, ..., 𝑚1 } : 𝑔𝑖 ( �̄� ) = 0}
be the index set for the active constraints. Suppose that �̄� is regular; i.e., the
family {∇𝑔𝑖 ( �̄� ) }𝑖∈𝐼 ∪ {∇ℎ 𝑗 ( �̄� ) }

𝑚2
𝑗=1 of vectors is linearly independent

(LICQ). Then, there exist 𝑣1 , ..., 𝑣𝑚1 ∈ R and𝑤1 , ..., 𝑤𝑚2 ∈ R such that

∇ 𝑓 ( �̄� ) +
𝑚1∑︁
𝑖=1
𝑣𝑖∇𝑔𝑖 ( �̄� ) +

𝑚2∑︁
𝑗=1
𝑤 𝑗∇ℎ 𝑗 ( �̄� ) = 0, (DF)

𝑣𝑖 ≥ 0 for 𝑖 = 1, ..., 𝑚1 . (DF)
(17)

Furthermore, in every neighborhood N of �̄�, ∃𝑥′ ∈ N such that 𝑣𝑖𝑔𝑖 (𝑥′ ) >
0 for all 𝑖 ∈ {1, . . . , 𝑚1 } with 𝑣𝑖 ≠ 0, and 𝑤 𝑗ℎ 𝑗 (𝑥′ ) > 0 for all
𝑗 ∈ {1, . . . , 𝑚2 } with 𝑤 𝑗 ≠ 0.i.e., 𝑣𝑖𝑔𝑖 ( �̄� ) = 0 ∀𝑖 = 1, ..., 𝑚1 (CS)
We say that �̄� ∈ R𝑛 is a KKT point if (i) �̄� ∈ 𝑆 and (ii) there exist Lagrange

multipliers {𝑣𝑖 }
𝑚1
𝑖=1 , {𝑤 𝑗 }

𝑚2
𝑗=1 that solve system (17).

Example 1 (Failure of the KKT Conditions in the Absence of Regularity,
Importance of CQ) Consider the following problem:
min 𝑥1 s.t. (𝑥1 − 1)2 + (𝑥2 − 1)2 ≤ 1, (𝑥1 − 1)2 + (𝑥2 + 1)2 ≤ 1.
Since there is only one feasible solution (i.e., (𝑥1 , 𝑥2 ) = (1, 0)), it is auto-
matically optimal. The KKT conditions are given by[
1
0

]
+ 2𝑣1

[
𝑥1 − 1
𝑥2 − 1

]
+ 2𝑣2

[
𝑥1 − 1
𝑥2 + 1

]
= 0; (DF)

𝑣1
(
(𝑥1 − 1)2 + (𝑥2 − 1)2 − 1

)
= 0, 𝑣2

(
(𝑥1 − 1)2 + (𝑥2 + 1)2 − 1

)
= 0; (CS)

𝑣1 , 𝑣2 ≥ 0. (DF)
However, there is no solution (𝑣1 , 𝑣2 ) ≥ 0 when (𝑥1 , 𝑥2 ) = (1, 0) .
Without satisfying the CQ, KKT condition is not necessary for optimal point.
Final: If LICQ fails, there may still exist �̄� ∈ R𝑚 satisfying the KKT con-
dition. For example, if change the above objective function as min 𝑥2 , then
�̄� = (1, 0) and �̄� = (1/2, 0) is a solution to the KKT conditions.
There are other regularity conditions, a more well-known one is the following:
Theorem 4 Consider problem (5), where 𝑔1 , ..., 𝑔𝑚1 are convex and
ℎ1 , ..., ℎ𝑚2 are affine. Let �̄� ∈ 𝑆 be a local minimum and 𝐼 = {𝑖 ∈
{1, ..., 𝑚1 } : 𝑔𝑖 ( �̄� ) = 0}. Suppose that the Slater condition is satisfied;
i.e., there exists an 𝑥′ ∈ 𝑆 such that 𝑔𝑖 (𝑥′ ) < 0 for 𝑖 ∈ 𝐼 (Slater CQ). Then,
�̄� satisfies the KKT conditions (17).
Proof Since ℎ1 , ..., ℎ𝑚2 are affine, we may assume without loss that the
family {∇ℎ 𝑗 ( �̄� ) } 𝑗 of vectors is linearly independent. Now, by Theorem
2, we have 𝑢∇ 𝑓 ( �̄� ) + ∑𝑚1

𝑖=1 𝑣𝑖∇𝑔𝑖 ( �̄� ) +
∑𝑚2
𝑗=1 𝑤 𝑗∇ℎ 𝑗 ( �̄� ) = 0(19) for

some 𝑢, 𝑣1 , ..., 𝑣𝑚1 ≥ 0 and 𝑤1 , ..., 𝑤𝑚2 ∈ R, where not all of them are
zero. We claim that 𝑢 > 0. Suppose that this is not the case. Then, we have

∑𝑚1
𝑖=1 𝑣𝑖∇𝑔𝑖 ( �̄� ) +

∑𝑚2
𝑗=1 𝑤 𝑗∇ℎ 𝑗 ( �̄� ) = 0.(20)

Since not all of 𝑣1 , ..., 𝑣𝑚1 , 𝑤1 , ..., 𝑤𝑚2 are zero, we conclude there exists

an 𝑖′ ∈ 𝐼 with 𝑣𝑖′ > 0, for otherwise
∑𝑚2
𝑗=1 𝑤 𝑗∇ℎ 𝑗 ( �̄� ) = 0 with some

𝑤 𝑗 ≠ 0, which contradicts the linear independence of {∇ℎ 𝑗 ( �̄� ) } 𝑗 .
Now, by the Slater condition and the convexity of 𝑔1 , ..., 𝑔𝑚1 , we have

0 > 𝑔𝑖 (𝑥′ ) ≥ 𝑔𝑖 ( �̄� )+∇𝑔𝑖 ( �̄� )⊤ (𝑥′− �̄� ) = ∇𝑔𝑖 ( �̄� )⊤ (𝑥′− �̄� ) for 𝑖 ∈ 𝐼.(21)
Moreover, by the feasibility of 𝑥′ and the affinity of ℎ1 , ..., ℎ𝑚2 , we have
0 = ∇ℎ 𝑗 ( �̄� )⊤ (𝑥′ − �̄� ) for 𝑗 = 1, ..., 𝑚2 .(22) Let 𝑑 = 𝑥′ − �̄�. Since
𝑣1 , ..., 𝑣𝑚1 ≥ 0, 𝑣𝑖 = 0 for 𝑖 ∉ 𝐼 , and 𝑣𝑖′ > 0, by (21) and (22), we

have
(∑𝑚1
𝑖=1 𝑣𝑖∇𝑔𝑖 ( �̄� ) +

∑𝑚2
𝑗=1 𝑤 𝑗∇ℎ 𝑗 ( �̄� )

)⊤
𝑑 = 𝑣𝑖′∇𝑔𝑖 ( �̄� )⊤𝑑 < 0,

which contradicts (20). It follows that 𝑢 > 0 as claimed. Now, upon dividing
both sides of (19) by 𝑢, the desired result follows. □
Theorem 5 Consider problem (5), where 𝑔1 , ..., 𝑔𝑚1 are concave and
ℎ1 , ..., ℎ𝑚2 are affine. Let �̄� ∈ 𝑆 be a local minimum. Then, �̄� satis-
fies the KKT conditions (17).
Proof By Theorem 2, 𝑢∇ 𝑓 ( �̄� ) +∑𝑚1

𝑖=1 𝑣𝑖∇𝑔𝑖 ( �̄� ) +
∑𝑚2
𝑗=1 𝑤 𝑗∇ℎ 𝑗 ( �̄� ) = 0

for some 𝑢, 𝑣1 , ..., 𝑣𝑚1 ≥ 0 and 𝑤1 , ..., 𝑤𝑚2 ∈ R, where not all of them
are zero. We claim 𝑢 > 0. Suppose this is not the case; i.e., 𝑢 = 0. By the
concavity of 𝑔1 , ..., 𝑔𝑚1 and affinity of ℎ1 , ..., ℎ𝑚2 , for any 𝑥 ∈ R𝑛 , we
have 𝑔𝑖 (𝑥 ) ≤ 𝑔𝑖 ( �̄� ) + ∇𝑔𝑖 ( �̄� )⊤ (𝑥 − �̄� ) for 𝑖 = 1, ..., 𝑚1 ,
ℎ 𝑗 (𝑥 ) = ℎ 𝑗 ( �̄� ) + ∇ℎ 𝑗 ( �̄� )⊤ (𝑥 − �̄� ) for 𝑗 = 1, ..., 𝑚2 .
Since 𝑣𝑖𝑔𝑖 (𝑥 ) = 0 for 𝑖 = 1, ..., 𝑚1 and ℎ 𝑗 (𝑥 ) = 0 for 𝑗 = 1, ..., 𝑚2 ,∑𝑚1
𝑖=1 𝑣𝑖𝑔𝑖 (𝑥 ) +

∑𝑚2
𝑗=1 𝑤 𝑗ℎ 𝑗 (𝑥 )

≤ ∑𝑚1
𝑖=1 𝑣𝑖𝑔𝑖 (𝑥 ) +

∑𝑚2
𝑗=1 𝑤 𝑗ℎ 𝑗 (𝑥 )

+
(∑𝑚1
𝑖=1 𝑣𝑖∇𝑔𝑖 ( �̄� ) +

∑𝑚2
𝑗=1 𝑤 𝑗∇ℎ 𝑗 ( �̄� )

)⊤
(𝑥 − �̄� ) = 0.(24)

Now, since 𝑢 = 0, we either have 𝑣𝑖 > 0 for some 𝑖 = 1, ..., 𝑚1
or 𝑤 𝑗 ≠ 0 for some 𝑗 = 1, ..., 𝑚2 . Thus, by Theorem 2, there ex-
ists an 𝑥′ ∈ R𝑛 such that 𝑣𝑖𝑔𝑖 (𝑥′ ) > 0 for all 𝑖 with 𝑣𝑖 > 0 and
𝑤 𝑗ℎ 𝑗 (𝑥′ ) > 0 for all 𝑗 with 𝑤 𝑗 ≠ 0. However, such an 𝑥′ satisfies∑𝑚1
𝑖=1 𝑣𝑖𝑔𝑖 (𝑥

′ ) + ∑𝑚2
𝑗=1 𝑤 𝑗ℎ 𝑗 (𝑥

′ ) > 0, which contradicts (24). □
In particular, Theorem 5 implies that the KKT conditions (17) are necessary
for local optimality in a linearly constrained optimization problem.
Example 2 (Optimality Conditions of Some Optimization Problems)
1. Linear Programming. Consider the standard form LP. Since LP contains
only linear constraints, the KKT conditions are necessary for optimality.

𝑓 (𝑥 ) = 𝑐⊤𝑥, ∇ 𝑓 (𝑥 ) = 𝑐;
𝑔𝑖 (𝑥 ) = −𝑥𝑖 = −𝑒⊤

𝑖
𝑥, ∇𝑔𝑖 (𝑥 ) = −𝑒𝑖 ;

ℎ 𝑗 (𝑥 ) = 𝑏 𝑗 − 𝑎⊤𝑗 𝑥, ∇ℎ 𝑗 (𝑥 ) = −𝑎 𝑗 .
Upon letting 𝑣 ∈ R𝑛 (resp. 𝑤 ∈ R𝑚) be the vector of Lagrange multipliers
associated with the inequality constraint (resp. equality constraint), we may
write the KKT conditions as follows:
𝑐 + ∑𝑛

𝑖=1 𝑣𝑖 (−𝑒𝑖 ) +
∑𝑚
𝑗=1 𝑤 𝑗 (−𝑎 𝑗 ) = 0,⇒ 𝑐 − 𝑣 − 𝐴⊤𝑤 = 0 (DF)

𝑣 ≥ 0, (DF)
𝑣𝑖 𝑥𝑖 = 0 for 𝑖 = 1, . . . , 𝑛. (CS)
Here, 𝑎 𝑗 ∈ R𝑛 is the 𝑗-th row of 𝐴, where 𝑗 = 1, ..., 𝑚. The above can
be expressed more compactly as 𝑣 = 𝑐 − 𝐴⊤𝑤 ≥ 0, 𝑣⊤𝑥 = 0, which
correspond to the dual feasibility and complementarity conditions for LP.
2. Smallest Eigenvalue of a Symmetric Matrix Let 𝐴 ∈ 𝑆𝑛 be given.
min 𝑥⊤𝐴𝑥 s.t. ∥𝑥 ∥2

2 = 1.
𝑓 (𝑥 ) = 𝑥⊤𝐴𝑥, ∇ 𝑓 (𝑥 ) = 2𝐴𝑥; ℎ (𝑥 ) = 1 − ∥𝑥 ∥2

2 , ∇ℎ (𝑥 ) = −2𝑥.
Since the feasible set is compact and the objective function is continuous,
problem has an optimal solution (Weierstrass). Moreover, since the constraint
gradient ∇(1− ∥𝑥 ∥2

2 ) does not vanish at any feasible solution to (26), the reg-
ularity condition in Theorem 3 is satisfied (LICQ). Hence, the KKT conditions
are necessary for optimality. Upon letting 𝑤 ∈ R be the Lagrange multiplier
associated with the equality constraint, we can write the KKT condition as
2𝐴𝑥 − 𝑤 (2𝑥 ) = 0.
This yields 𝐴𝑥 = 𝑤𝑥, which shows that 𝑥 has to be an eigenvector of 𝐴with
eigenvalue 𝑤. To determine the optimal value 𝑤∗ of and optimal solution 𝑥∗

to problem (26), note that (𝑥∗ )⊤𝐴(𝑥∗ ) = 𝑤∗ ∥𝑥∗ ∥2
2 = 𝑤∗ . This implies

that the objective value is smallest when 𝑤∗ is the smallest eigenvalue of 𝐴,
and the optimal solution 𝑥∗ is an eigenvector of 𝐴 corresponding to 𝑤∗ .
3. Optimization of a Matrix Function Let 𝐴 ∈ 𝑆𝑛++ and 𝑏 ∈ R++ be given.
Consider the following problem:
inf − log det 𝑍 s.t. 𝐴 • 𝑍 ≤ 𝑏, 𝑍 ∈ 𝑆𝑛++ .
We claim that problem has an optimal solution: To see this, observe that
𝑍 =

(
𝑏

tr(𝐴)

)
𝐼 is feasible. Thus, problem is equivalent to

inf𝑍∈F − log det 𝑍, where
F = {𝑍 ∈ 𝑆𝑛+ : 𝐴 • 𝑍 ≤ 𝑏, − log det 𝑍 ≤ −𝑛 log(𝑏/tr(𝐴) ) }.
Now, for any 𝑍 ∈ F, we have 𝜆min (𝐴) tr(𝑍 ) ≤ 𝐴 • 𝑍 ≤ 𝑏. Reason:
𝐴 • 𝑍 = tr(𝑈Σ𝑈⊤𝑍 ) = tr(Σ𝑈⊤𝑍𝑈) = ∑𝑛

𝑖=1 𝜆𝑖 (𝐴) (𝑈
⊤𝑍𝑈)𝑖𝑖

≥ ∑𝑛
𝑖=1 𝜆min (𝐴) (𝑈⊤𝑍𝑈)𝑖𝑖 = 𝜆min (𝐴)

∑𝑛
𝑖=1 (𝑈

⊤𝑍𝑈)𝑖𝑖
= 𝜆min (𝐴) tr(𝑈⊤𝑍𝑈) = 𝜆min (𝐴) tr(𝑍 ) . This implies
𝜆𝑖 (𝑍 ) ≤ 𝑏/𝜆min (𝐴) for 𝑖 = 1, ..., 𝑛. On the other hand, for 𝑖 = 1, . . . , 𝑛,

−𝑛 log
(
𝑏

tr(𝐴)

)
≥ − log det 𝑍 = −∑𝑛

𝑖=1 log𝜆𝑖 (𝑍 )

≥ − log𝜆𝑖 (𝑍 ) − (𝑛 − 1) log
(

𝑏
𝜆min (𝐴)

)
, which yields

𝜆𝑖 (𝑍 ) ≥ exp
(
𝑛 log

(
𝑏

tr(𝐴)

)
− (𝑛 − 1) log

(
𝑏

𝜆min (𝐴)

))
> 0. In partic-

ular, we see that 𝑍 ↦→ − log det 𝑍 is continuous on F and hence F is closed.
Since optimizing a continuous function over a compact set, it has an optimal
solution (Weierstrass). This implies problem has an optimal solution.
Since problem contains only linear constraints, the KKT conditions are neces-
sary for optimality. It is known that
∇ 𝑓 (𝑍 ) = ∇(− log det 𝑍 ) = −𝑍−1 , ∇𝑔 (𝑍 ) = ∇(𝐴 • 𝑍 − 𝑏) = 𝐴;
Upon letting 𝑣 ∈ R be the Lagrange multiplier associated with the inequality:
−𝑍−1 + 𝑣𝐴 = 0, 𝑣 ≥ 0, 𝑣 (𝐴 • 𝑍 − 𝑏) = 0.
From the first equality, we must have 𝑣 > 0 and 𝑍 = 𝐴−1/𝑣. This, together
with the third equality, implies that 𝑏 = 𝐴 • 𝑍 = 1

𝑣 (𝐴 • 𝐴−1 ) = 𝑛
𝑣 .

Hence, we obtain 𝑣 = 𝑛/𝑏. Since the above KKT conditions admit a unique
solution, we conclude that 𝑍∗ = 𝑏𝐴−1/𝑛 must be the optimal solution.
In the case where (5) is a convex optimization problem, the KKT conditions are
sufficient for optimality as well. To prove this, let us first define the Lagrangian
function 𝐿 : 𝑋 × R𝑚1 × R𝑚2 → R associated with problem (5) by

𝐿 (𝑥, 𝑣, 𝑤) = 𝑓 (𝑥 ) +
𝑚1∑︁
𝑖=1
𝑣𝑖𝑔𝑖 (𝑥 ) +

𝑚2∑︁
𝑗=1
𝑤 𝑗ℎ 𝑗 (𝑥 ) .

In the case where (5) is a convex optimization problem, the KKT conditions
are sufficient for optimality as well. To prove this, let us first define the La-
grangian function 𝐿 : 𝑋 × R𝑚1 × R𝑚2 → R associated with problem (5)
by 𝐿 (𝑥, 𝑣, 𝑤) = 𝑓 (𝑥 ) + ∑𝑚1

𝑖=1 𝑣𝑖𝑔𝑖 (𝑥 ) +
∑𝑚2
𝑗=1 𝑤 𝑗ℎ 𝑗 (𝑥 ) .

Theorem 6 Consider problem (5), where 𝑋 is open and convex,
𝑓 , 𝑔1 , ..., 𝑔𝑚1 are convex on 𝑋, and ℎ1 , ..., ℎ𝑚2 are affine. Suppose
that ( �̄�, �̄�, �̄�) ∈ 𝑋 × R𝑚1 × R𝑚2 is a solution to the KKT conditions

𝑔𝑖 ( �̄� ) ≤ 0 for 𝑖 = 1, ..., 𝑚1 , (PF)

ℎ 𝑗 ( �̄� ) = 0 for 𝑗 = 1, ..., 𝑚2 , (PF)

∇ 𝑓 ( �̄� ) +
𝑚1∑︁
𝑖=1
�̄�𝑖∇𝑔𝑖 ( �̄� ) +

𝑚2∑︁
𝑗=1
�̄� 𝑗∇ℎ 𝑗 ( �̄� ) = 0, (DF)

�̄� ≥ 0, (DF)

�̄�𝑖𝑔𝑖 ( �̄� ) = 0 for 𝑖 = 1, ..., 𝑚1 . (CS)
Then, �̄� is an optimal solution to (5).
Proof Since the function 𝑥 ↦→ 𝐿 (𝑥, �̄�, �̄�) = 𝑓 (𝑥 ) + ∑𝑚1

𝑖=1 �̄�𝑖𝑔𝑖 (𝑥 ) +∑𝑚2
𝑗=1 �̄� 𝑗ℎ 𝑗 (𝑥 ) is convex on 𝑋, by condition (c) and Proposition 2, we see

that �̄� is a global minimum of 𝑥 ↦→ 𝐿 (𝑥, �̄�, �̄�) in 𝑋. This, together with
conditions (b), (d), and (e), implies that
𝑓 ( �̄� ) = 𝑓 ( �̄� ) + ∑𝑚1

𝑖=1 �̄�𝑖𝑔𝑖 ( �̄� ) +
∑𝑚2
𝑗=1 �̄� 𝑗ℎ 𝑗 ( �̄� )

= min𝑥∈𝑋
{
𝑓 (𝑥 ) + ∑𝑚1

𝑖=1 �̄�𝑖𝑔𝑖 (𝑥 ) +
∑𝑚2
𝑗=1 �̄� 𝑗ℎ 𝑗 (𝑥 )

}
≤ inf𝑥∈𝑋;𝑔𝑖 (𝑥) ≤0,𝑖∈ [𝑚1 ];ℎ 𝑗 (𝑥)=0, 𝑗∈ [𝑚2 ]

{
𝑓 (𝑥 ) + ∑𝑚1

𝑖=1 𝑣𝑖𝑔𝑖 (𝑥 ) +
∑𝑚2
𝑗=1 𝑤 𝑗ℎ 𝑗 (𝑥 )

}
≤ inf𝑥∈𝑋;𝑔𝑖 (𝑥) ≤0,𝑖∈ [𝑚1 ];ℎ 𝑗 (𝑥)=0, 𝑗∈ [𝑚2 ] 𝑓 (𝑥 ) . □
It is important to note that Theorem 6 assumes the existence of the Lagrange
multipliers �̄� ∈ R𝑚1 and �̄� ∈ R𝑚2 . Thus, it does not contradict the
observation we made in Example 1.
Conclusion:
Necessary (Theorems 3-5):
(1) LICQ; (2) 𝑔 convex, ℎ affine, Slater CQ; (3) 𝑔 concave, ℎ affine
Sufficient (Theorem 6):
𝑋 open and convex, 𝑓 convex, 𝑔 convex, ℎ affine, optimal exists
Example 3 (Power Allocation Optimization in Parallel AWGN Channels)
Consider 𝑛 parallel additive white Gaussian noise (AWGN) channels. For
𝑖 = 1, ..., 𝑛, the 𝑖-th channel is characterized by the channel power gain
ℎ𝑖 ≥ 0 and the additive Gaussian noise power 𝜎𝑖 > 0. Let 𝑝𝑖 denote the
transmit power allocated to the 𝑖-th channel, where 𝑖 = 1, ..., 𝑛. The maxi-
mum information rate that can be reliably transmitted over the 𝑖-th channel is
then given by 𝑟𝑖 = log2

(
1 + ℎ𝑖 𝑝𝑖𝜎𝑖

)
= (ln 2)−1 ln

(
1 + ℎ𝑖 𝑝𝑖𝜎𝑖

)
;

Given a budget 𝑃 on the total transmit power over 𝑛 channels, our goal is to
allocate power 𝑝1 , ..., 𝑝𝑛 on each of the 𝑛 channels such that the sum rate
of all the channels is maximized. We are led to the formulation:

max
𝑛∑︁
𝑖=1

ln
(
1 + ℎ𝑖 𝑝𝑖

𝜎𝑖

)
s.t.

𝑛∑︁
𝑖=1

𝑝𝑖 ≤ 𝑃; 𝑝𝑖 ≥ 0 for 𝑖 = 1, ..., 𝑛.

It is easy to verify that the objective function is concave. Hence, problem is a
linearly constrained convex maximization problem. Now, by Theorems 5 and
6, every solution ( �̄�, �̄�) ∈ R𝑛 × R𝑛+1 to the following KKT system will
yield an optimal solution �̄� ∈ R𝑛 :
𝑣0 − 𝑣𝑖 =

ℎ𝑖
ℎ𝑖 𝑝𝑖+𝜎𝑖

for 𝑖 = 1, ..., 𝑛, (DF1)

𝑣0
(∑𝑛
𝑖=1 𝑝𝑖 − 𝑃

)
= 0, (CS1)

𝑣𝑖 𝑝𝑖 = 0 for 𝑖 = 1, ..., 𝑛, (CS2)
𝑣𝑖 ≥ 0 for 𝑖 = 0, 1, ..., 𝑛. (DF2)
we may assume ℎ𝑖 > 0 for 𝑖 = 1, ..., 𝑛. Then, we have 𝑣0 ≥ 𝑣𝑖 ≥ 0 by two
(DF)s, which implies that 𝑝𝑖 = 1

𝑣0−𝑣𝑖
− 𝜎𝑖
ℎ𝑖

for 𝑖 = 1, ..., 𝑛. (32)
Now, if 𝑝𝑖 > 0, then 𝑣𝑖 = 0 by (CS2). On the other hand, if 𝑝𝑖 = 0, then in
order to satisfy (32) with some 𝑣𝑖 ≥ 0, we must have 1

𝑣0
− 𝜎𝑖
ℎ𝑖

≤ 0.

Hence, we obtain 𝑝𝑖 =
(

1
𝑣0

− 𝜎𝑖
ℎ𝑖

)+
for 𝑖 = 1, ..., 𝑛.

Moreover, since 𝑣0 > 0,
∑𝑛
𝑖=1 𝑝𝑖 = 𝑃 by (CS1).

∑𝑛
𝑖=1

(
1
𝑣0

− 𝜎𝑖
ℎ𝑖

)+
= 𝑃.

In particular, we can solve for the unique positive root �̄�0 of the above equation
by a simple bisection search over the interval 0 < 𝑣0 < max𝑖 (ℎ𝑖/𝜎𝑖 ) .
Once we have �̄�0 , we can extract the optimal allocation �̄� = ( �̄�1 , ..., �̄�𝑛 ) .
6.4 Lagrangian Duality

inf 𝑓 (𝑥 ) s.t. 𝑔𝑖 (𝑥 ) ≤ 0 for 𝑖 = 1, ..., 𝑚1 ,

ℎ 𝑗 (𝑥 ) = 0 for 𝑗 = 1, ..., 𝑚2 ,

𝑥 ∈ 𝑋. (P)
Here, 𝑓 , 𝑔1 , ..., 𝑔𝑚1 , ℎ1 , ..., ℎ𝑚2 : R𝑛 → R are arbitrary functions, and
𝑋 is an arbitrary non-empty subset of R𝑛 .
We write the first two sets of constraints in (P) as𝐺 (𝑥 ) ≤ 0 and 𝐻 (𝑥 ) = 0,
where 𝐺 : R𝑛 → R𝑚1 is given by 𝐺 (𝑥 ) = (𝑔1 (𝑥 ) , ..., 𝑔𝑚1 (𝑥 ) ) and
𝐻 : R𝑛 → R𝑚2 is given by 𝐻 (𝑥 ) = (ℎ1 (𝑥 ) , ..., ℎ𝑚2 (𝑥 ) ) .
Reformulate (P) using a penalty function approach. (P) is equivalent to
inf𝑥∈𝑋 sup

𝑣∈R𝑚1
+ ,𝑤∈R𝑚2 𝐿 (𝑥, 𝑣, 𝑤) , where

𝐿 : R𝑛 × R𝑚1 × R𝑚2 → R is the Lagrangian function associated with (P):
𝐿 (𝑥, 𝑣, 𝑤) = 𝑓 (𝑥 ) + 𝑣⊤𝐺 (𝑥 ) + 𝑤⊤𝐻 (𝑥 ) .
This follows from the fact that for any 𝑥 ∈ 𝑋, (35)

sup
𝑣∈R𝑚1

+ ,𝑤∈R𝑚2

{
𝑓 (𝑥 ) + 𝑣⊤𝐺 (𝑥 ) + 𝑤⊤𝐻 (𝑥 )

}
=

{
𝑓 (𝑥 ) if𝐺 (𝑥 ) ≤ 0 and 𝐻 (𝑥 ) = 0,
+∞ otherwise.

Penalize by letting 𝑣 ↑ +∞, letting 𝑤 ↑ +∞ or 𝑤 ↓ −∞.
Now, it is clear that for any �̄� ∈ 𝑋 and (�̄�, �̄�) ∈ R

𝑚1
+ × R𝑚2 ,

𝜃 (�̄�, �̄�) = inf𝑥∈𝑋 𝐿 (𝑥, �̄�, �̄�) ≤ 𝐿 ( �̄�, �̄�, �̄�)
≤ sup

𝑣∈R𝑚1
+ ,𝑤∈R𝑚2 𝐿 ( �̄�, 𝑣, 𝑤)= 𝛾 ( �̄� ) . (*)

Hence, we have 𝑣∗
𝑑
= sup

𝑣∈R𝑚1
+ ,𝑤∈R𝑚2 inf𝑥∈𝑋 𝐿 (𝑥, 𝑣, 𝑤)

≤ inf𝑥∈𝑋 sup
𝑣∈R𝑚1

+ ,𝑤∈R𝑚2 𝐿 (𝑥, 𝑣, 𝑤)= 𝑣∗𝑝 .
Observe that the right-hand side is precisely problem (P). This motivates us to
define the following dual of (P):
𝑣∗
𝑑
= sup

𝑣∈R𝑚1
+ ,𝑤∈R𝑚2 𝜃 (𝑣, 𝑤) , (D)

where 𝜃 : R𝑚1 × R𝑚2 → R is the value function given by
𝜃 (𝑣, 𝑤) = inf𝑥∈𝑋 𝐿 (𝑥, 𝑣, 𝑤) .
Problem (D) is known as a Lagrangian dual of problem (P).
Since the set𝑋 is arbitrary, there can be different Lagrangian duals for the same
primal problem, depending on which constraints are handled as 𝐺 (𝑥 ) ≤ 0
and 𝐻 (𝑥 ) = 0, and which constraints are treated by 𝑋. Different choices of
the Lagrangian dual problem may lead to different dual optimal value.
Theorem 7 (Weak Duality Theorem) Let �̄� ∈ R𝑛 feasible for (P) and
(�̄�, �̄�) ∈ R𝑚1 × R𝑚2 feasible for (D). Then, 𝜃 (�̄�, �̄�) ≤ 𝛾 ( �̄� ) = 𝑓 ( �̄� ) .
Note that the value function 𝜃 is the pointwise infimum of affine functions. As
such, it is a concave function, regardless of the convexity of (P). In particular,
the Lagrangian dual (D) is always a convex optimization problem. So strong
duality between (P) and (D) may not hold in general.



Example 4 (A Primal-Dual Pair with Non-Zero Duality Gap)
𝑣∗𝑝 = min𝑥∈𝑋 −𝑥 s.t. 𝑥 ≤ 1, 𝑥 ∈ 𝑋 = {0, 2}.
It is clear that the optimal value of and optimal solution are 𝑣∗𝑝 = 0 and
𝑥∗ = 0, respectively. By dualizing the inequality constraint, we obtain the
following Lagrangian dual: 𝑣∗

𝑑
= sup𝑣≥0 min𝑥∈{0,2} {−𝑥 + 𝑣 (𝑥 − 1) } .

Also we can: 𝑣∗
𝑑
= sup𝑣≥0 min𝑥∈R {−𝑥 + 𝑣 (𝑥 − 1) + 𝑤 (𝑥 (𝑥 − 2) ) } .

Observe that for any 𝑣 ≥ 0, we have
min𝑥∈{0,2} {−𝑥 + 𝑣 (𝑥 − 1) } = min{−𝑣, 𝑣 − 2}.
It follows that the optimal value of and optimal solution to (38) are 𝑣∗

𝑑
= −1

and 𝑣∗ = 1, respectively. In this case, we have 𝑣∗𝑝 > 𝑣∗𝑑 .

Definition 1 We say that ( �̄�, �̄�, �̄�) ∈ R𝑛 × R
𝑚1
+ × R𝑚2 is a saddle point

of the Lagrangian function 𝐿 of (P) if the following conditions are satisfied:
(a) �̄� ∈ 𝑋. (b) �̄� ≥ 0. (c) For all 𝑥 ∈ 𝑋 and (𝑣, 𝑤) ∈ R

𝑚1
+ × R𝑚2 ,

𝐿 ( �̄�, 𝑣, 𝑤) ≤ 𝐿 ( �̄�, �̄�, �̄�) ≤ 𝐿 (𝑥, �̄�, �̄�) .
In particular, the point ( �̄�, �̄�, �̄�) is a saddle point of 𝐿 if �̄� minimizes 𝐿 over
all 𝑥 ∈ 𝑋 when (𝑣, 𝑤) is fixed at (�̄�, �̄�) , and (�̄�, �̄�) maximizes 𝐿 over all
(𝑣, 𝑤) ∈ R

𝑚1
+ × R𝑚2 when 𝑥 is fixed at �̄�.

Def + (*): 𝐿 ( �̄�, �̄�, �̄�) = inf𝑥∈𝑋 𝐿 (𝑥, �̄�, �̄�) = sup𝑥∈𝑋 𝐿 ( �̄�, 𝑣, 𝑤) .
Theorem 8 The point ( �̄�, �̄�, �̄�) ∈ R𝑛 × R

𝑚1
+ × R𝑚2 is a saddle point of

the Lagrangian function 𝐿 associated with (P) iff the duality gap between (P)
and (D) is zero and �̄� and (�̄�, �̄�) are the optimal solutions to (P) and (D).
Proof Suppose that ( �̄�, �̄�, �̄�) is a saddle point of 𝐿. From condition (c),
𝐿 ( �̄�, 𝑣, 𝑤) ≤ 𝐿 ( �̄�, �̄�, �̄�) ≤ 𝐿 (𝑥, �̄�, �̄�) ∀ (𝑣, 𝑤) ∈ R

𝑚1
+ × R𝑚2 . It

follows from condition (a) and the identity (35) that �̄� is feasible for (P). It
is also clear from condition (b) that (�̄�, �̄�) is feasible for (D). Hence, by
condition (c), we have
𝜃 (�̄�, �̄�) = min

𝑥∈𝑋
𝐿 (𝑥, �̄�, �̄�) = 𝐿 ( �̄�, �̄�, �̄�) = max

𝑣∈R𝑚1
+ ,𝑤∈R𝑚2

𝐿 ( �̄�, 𝑣, 𝑤) = 𝑓 ( �̄� );

i.e., the duality gap between (P) and (D) is zero, and the common optimal value
𝑣∗𝑝 = 𝑣∗

𝑑
is attained by the primal solution �̄� and dual solution (�̄�, �̄�) .

Conversely, suppose that �̄� and (�̄�, �̄�) are optimal for (P) and (D), re-
spectively, with 𝑓 ( �̄� ) = 𝜃 (�̄�, �̄�) . Then, we have �̄� ∈ 𝑋, 𝐺 ( �̄� ) ≤ 0,
𝐻 ( �̄� ) = 0, and �̄� ≥ 0; i.e., conditions (a) and (b) are satisfied. Moreover, by
the primal feasibility of �̄� and dual feasibility of (�̄�, �̄�) , we have
𝜃 (�̄�, �̄�) = inf

𝑥∈𝑋
𝐿 (𝑥, �̄�, �̄�) ≤ 𝐿 ( �̄�, �̄�, �̄�) ≤ sup

𝑣∈R𝑚1
+ ,𝑤∈R𝑚2

𝐿 ( �̄�, 𝑣, 𝑤) = 𝑓 ( �̄� ) .

Since we have 𝑓 ( �̄� ) = 𝜃 (�̄�, �̄�) by assumption, equality must hold through-
out the above chain of inequalities. In particular, for any 𝑥 ∈ 𝑋 and
(𝑣, 𝑤) ∈ R

𝑚1
+ × R𝑚2 , we have

𝐿 ( �̄�, 𝑣, 𝑤) ≤ sup
𝑣∈R𝑚1

+ ,𝑤∈R𝑚2
𝐿 ( �̄�, 𝑣, 𝑤) = 𝐿 ( �̄�, �̄�, �̄�) = inf

𝑥∈𝑋
𝐿 (𝑥, �̄�, �̄�) ≤ 𝐿 (𝑥, �̄�, �̄�);

i.e., condition (c) is satisfied. This completes the proof. □
sup

𝑣∈R𝑚1
+ ,𝑤∈R𝑚2

inf
𝑥∈𝑋

𝐿 (𝑥, 𝑣, 𝑤) = inf
𝑥∈𝑋

sup
𝑣∈R𝑚1

+ ,𝑤∈R𝑚2
𝐿 (𝑥, 𝑣, 𝑤) .

Theorem 9 Let 𝐿 be the Lagrangian function associated with (P). Suppose
(a) 𝑋 is a compact convex subset of R𝑛 ; (b) (𝑣, 𝑤) ↦→ 𝐿 (𝑥, 𝑣, 𝑤) is con-
tinuous and concave on R

𝑚1
+ ×R𝑚2 for each 𝑥 ∈ 𝑋; (c) 𝑥 ↦→ 𝐿 (𝑥, 𝑣, 𝑤)

is continuous and convex on 𝑋 for each (𝑣, 𝑤) ∈ R
𝑚1
+ × R𝑚2 .

Then, we have (strong duality)
sup

𝑣∈R𝑚1
+ ,𝑤∈R𝑚2

min
𝑥∈𝑋

𝐿 (𝑥, 𝑣, 𝑤) = min
𝑥∈𝑋

sup
𝑣∈R𝑚1

+ ,𝑤∈R𝑚2
𝐿 (𝑥, 𝑣, 𝑤) .

Theorem 10 (Saddle Point Optimality Conditions)
The point ( �̄�, �̄�, �̄�) ∈ R𝑛 ×R

𝑚1
+ ×R𝑚2 is a saddle point of the Lagrangian

function 𝐿 associated with (P) iff the following hold:
(a) (Primal Feasibility) �̄� ∈ 𝑋, 𝐺 ( �̄� ) ≤ 0, and 𝐻 ( �̄� ) = 0.
(b) (Lagrangian Optimality) �̄� ≥ 0 and �̄� = arg min𝑥∈𝑋 𝐿 (𝑥, �̄�, �̄�) .
(c) (Complementarity) �̄�⊤𝐺 ( �̄� ) = 0.
Proof Suppose that ( �̄�, �̄�, �̄�) is a saddle point of 𝐿. Then, conditions (a)
and (b) follow from Definition 1 and Theorem 8. Now, Definition 1 implies
that 𝑓 ( �̄� ) = 𝐿 ( �̄�, 0, 0) ≤ 𝐿 ( �̄�, �̄�, �̄�) = 𝑓 ( �̄� ) + �̄�⊤𝐺 ( �̄� ) ,
or equivalently, �̄�⊤𝐺 ( �̄� ) ≥ 0. On the other hand, since �̄� ≥ 0 and
𝐺 ( �̄� ) ≤ 0, we have �̄�⊤𝐺 ( �̄� ) ≤ 0. This gives condition (c).
Conversely, suppose that ( �̄�, �̄�, �̄�) ∈ R𝑛 × R

𝑚1
+ × R𝑚2 satisfies condi-

tions (a)-(c) above. Then, we have 𝐿 (𝑥, �̄�, �̄�) ≤ 𝐿 ( �̄�, �̄�, �̄�) for all 𝑥 ∈ 𝑋.
Moreover, we have 𝐿 ( �̄�, �̄�, �̄�) = 𝑓 ( �̄� ) + �̄�⊤𝐺 ( �̄� ) + �̄�⊤𝐻 ( �̄� )
≥ 𝑓 ( �̄� ) + �̄�⊤𝐺 ( �̄� ) + �̄�⊤𝐻 ( �̄� ) = 𝐿 ( �̄�, �̄�, �̄�) ∀ (𝑣, 𝑤) ∈ R

𝑚1
+ ×R𝑚2 ,

since �̄�⊤𝐺 ( �̄� ) = 0, 𝐺 ( �̄� ) ≤ 0, and 𝐻 ( �̄� ) = 0. By Definition 1, we
conclude that ( �̄�, �̄�, �̄�) is a saddle point of 𝐿. □
Corollary 2 Consider problem (P), where 𝑋 is open and convex,
𝑓 , 𝑔1 , ..., 𝑔𝑚1 are convex and continuously differentiable on 𝑋, and
ℎ1 , ..., ℎ𝑚2 are affine. Suppose that (P) has an optimal solution and sat-
isfies the Slater condition. Then, the dual (D) also has an optimal solution.
Moreover, we have 𝑣∗𝑝 = 𝑣∗

𝑑
.

Proof Let �̄� be an optimal solution to (P). By Theorem 4, there exist �̄� ∈ R𝑚1
and �̄� ∈ R𝑚2 such that ( �̄�, �̄�, �̄�) satisfies the KKT conditions of (P). By
Proposition 2, ∇ 𝑓 ( �̄� ) +∑𝑚1

𝑖=1 �̄�𝑖∇𝑔𝑖 ( �̄� ) +
∑𝑚2
𝑗=1 �̄� 𝑗∇ℎ 𝑗 ( �̄� ) = 0 is equiv-

alent to �̄� = arg min𝑥∈𝑋 𝐿 (𝑥, �̄�, �̄�) . So ( �̄�, �̄�, �̄�) is a saddle point of the
Lagrangian function 𝐿 associated with (P). It follows from Theorems 8 and 10
that (�̄�, �̄�) is an optimal solution to (D) and 𝑣∗𝑝 = 𝑣∗

𝑑
. □

Corollary 3 Consider problem (P), where 𝑋 is open and convex, 𝑓 is convex
and continuously differentiable on 𝑋, and 𝑔1 , ..., 𝑔𝑚1 , ℎ1 , ..., ℎ𝑚2 are
affine. Suppose that (P) has an optimal solution. Then, the dual (D) also has
an optimal solution. Moreover, we have 𝑣∗𝑝 = 𝑣∗

𝑑
.

Proof: same as Corollary 2, except invoke Theorem 5 instead of Theorem 4.
6.4.1 Example Problems
1. Let 𝑄 ∈ 𝑆𝑛 , 𝐴 ∈ R𝑚×𝑛 , 𝑏 ∈ R𝑚 , and 𝑐 ∈ R𝑛 be given. Consider

the following problem: inf𝑥 𝑓 (𝑥 ) = 1
2 𝑥

⊤𝑄𝑥 + 𝑐⊤𝑥 s.t.𝐴𝑥 ≤ 𝑏
(a) Let 𝑣 ∈ R𝑚 be the multiplier associated with the constraint 𝐴𝑥 ≤ 𝑏.
Write down the KKT conditions associated with Problem and explain why
they are necessary for optimality.
(b) Let �̄� ∈ R𝑛 be a KKT point of Problem; i.e., there exists a multiplier
�̄� ∈ R𝑚 such that ( �̄�, �̄�) satisfies the KKT conditions found in (a). Let
I( �̄� ) = {𝑖 : 𝑎⊤

𝑖
�̄� = 𝑏𝑖 }, where 𝑎⊤

𝑖
is the 𝑖-th row of 𝐴, be the active

index set associated with �̄�. Suppose that whenever 𝑑 ∈ R𝑛 satisfies
𝑎⊤
𝑖
𝑑 ≤ 0 for all 𝑖 ∈ I( �̄� ) , we have 𝑑⊤𝑄𝑑 ≥ 0. Show �̄� is a local

minimum of Problem.
A: (a) The KKT conditions associated with Problem are given by
𝑄𝑥 + 𝑐 + ∑𝑚

𝑖=1 𝑣𝑖𝑎𝑖 = 0; 𝑣 ≥ 0; 𝑣𝑖 (𝑎⊤𝑖 𝑥 − 𝑏𝑖 ) = 0 for 𝑖 =

1, ..., 𝑚.
Since Problem is a linearly constrained optimization problem, by Theorem
5, the above KKT conditions are necessary for optimality.
(b) Since 𝑓 is a quadratic function, by Taylor’s theorem, 𝑓 (𝑥 ) − 𝑓 ( �̄� ) =
∇ 𝑓 ( �̄� )⊤ (𝑥 − �̄� ) + 1

2 (𝑥 − �̄� )⊤𝑄 (𝑥 − �̄� ) for any 𝑥 ∈ R𝑛 . Now, let

𝑥 be a feasible solution to Problem that is sufficiently close to �̄� and set
𝑑 = 𝑥 − �̄�.
𝑓 (𝑥 ) − 𝑓 ( �̄� ) = ∇ 𝑓 ( �̄� )⊤𝑑 + 1

2 𝑑
⊤𝑄𝑑 = −∑𝑚

𝑖=1 �̄�𝑖𝑎
⊤
𝑖
𝑑 + 1

2 𝑑
⊤𝑄𝑑

= −∑
𝑖∈I( �̄�) �̄�𝑖𝑎

⊤
𝑖
(𝑥 − �̄� ) + 1

2 𝑑
⊤𝑄𝑑 ≥ 0,

where the second equality follows from the KKT condition (i), the third
equality follows from the KKT condition (iii) (since �̄�𝑖 = 0 if 𝑖 ∉ I( �̄� )),
and the last inequality follows from the KKT condition (ii) and our as-
sumption on 𝑄 (since 𝑎⊤

𝑖
𝑑 = 𝑎⊤

𝑖
(𝑥 − �̄� ) = 𝑎⊤

𝑖
𝑥 − 𝑏𝑖 ≤ 0 for all

𝑖 ∈ I( �̄� )).
2. Consider the problem min𝑥∈R𝑛 max{𝑔1 (𝑥 ) , ..., 𝑔𝑚 (𝑥 ) }. Show that

𝑥∗ ∈ R𝑛 is an optimal solution to Problem (1) if and only if there exists
a vector 𝑢∗ ∈ R𝑚 such that∑𝑚
𝑗=1 𝑢

∗
𝑗
∇𝑔 𝑗 (𝑥∗ ) = 0; 𝑢∗ ≥ 0;

∑𝑚
𝑗=1 𝑢

∗
𝑗
= 1;

𝑢∗
𝑗
= 0 if 𝑔 𝑗 (𝑥∗ ) < max{𝑔1 (𝑥∗ ) , ..., 𝑔𝑚 (𝑥∗ ) }, for 𝑗 =

1, ..., 𝑚.
A: Problem equivalent to: min 𝑧 s.t.𝑔 𝑗 (𝑥 ) ≤ 𝑧 for 𝑗 = 1, ..., 𝑚.[

0
1

]
+ ∑𝑚

𝑗=1 𝑢
∗
𝑗

[
∇𝑔 𝑗 (𝑥∗ )

−1

]
= 0, 𝑢∗

𝑗
(𝑔 𝑗 (𝑥∗ ) − 𝑧∗ ) = 0 for 𝑗 =

1, ..., 𝑚,
𝑔 𝑗 (𝑥∗ ) ≤ 𝑧∗ for 𝑗 = 1, ..., 𝑚, 𝑢∗ ≥ 0.

7 Simplex Method
Definition Let 𝑆 ⊆ R𝑛 be a non-empty convex set, 𝑥 ∈ 𝑆. If for any
𝜆 ∈ (0, 1) and 𝑥1 , 𝑥2 ∈ 𝑆, 𝑥 = 𝜆𝑥1 + (1 − 𝜆)𝑥2 implies 𝑥1 = 𝑥2 = 𝑥,
then 𝑥 is called a vertex of 𝑆.
Definition Let 𝑆 ⊆ R𝑛 be a non-empty convex set, 𝑑 ∈ R𝑛 . If for any
𝑥 ∈ 𝑆 and 𝜆 ≥ 0 such that 𝑥 + 𝜆𝑑 ∈ 𝑆, then 𝑑 is called a direction of 𝑆.
If for any directions 𝑑1 , 𝑑2 of 𝑆, 𝑑 = 𝛼𝑑1 + 𝜆𝑑2 where 𝛼 > 0, then 𝑑 is
called an extreme direction of 𝑆.
Let 𝑆 = {𝑥 ∈ R𝑛 | 𝐴𝑥 = 𝑏, 𝑥 ≥ 0}, where 𝐴 ∈ R𝑚×𝑛 is full row rank.
By definition, 𝑑 ≠ 0 is a direction of 𝑆 iff 𝐴𝑑 = 0, 𝑑 ≥ 0.
Let 𝐴 = (𝐵, 𝑁 ) , where 𝐵 ∈ R𝑚×𝑚 is non-singular, 𝑁 ∈ R𝑚×(𝑛−𝑚) .
Decompose 𝑥 as 𝑥⊤ = (𝑥⊤

𝐵
, 𝑥⊤
𝑁
) . Then 𝑥 ∈ 𝑆 can be written as

𝐵𝑥𝐵 + 𝑁𝑥𝑁 = 𝑏, 𝑥𝐵 ≥ 0, 𝑥𝑁 ≥ 0. Thus, 𝑥𝐵 = 𝐵−1 (𝑏 − 𝑁𝑥𝑁 ) .

Let 𝑥𝑁 = 0, then 𝑥𝐵 = 𝐵−1𝑏. If 𝐵−1𝑏 ≥ 0, then 𝑥 =

(
𝐵−1𝑏

0

)
is a

vertex of 𝑆. In fact, if there exists 𝜆 ∈ (0, 1) and 𝑥1 , 𝑥2 ∈ 𝑆 such that
𝑥 = 𝜆𝑥1 + (1 − 𝜆)𝑥2 , then 𝑥1 = 𝑥2 = 𝑥.
Theorem Let 𝑆 = {𝑥 ∈ R𝑛 | 𝐴𝑥 = 𝑏, 𝑥 ≥ 0}, where 𝐴 is full row rank.

Then 𝑥 ∈ 𝑆 is a vertex of 𝑆 iff 𝑥 can be expressed as 𝑥 =

(
𝐵−1𝑏

0

)
, where

𝐴 = (𝐵, 𝑁 ) , 𝐵 is invertible and 𝐵−1𝑏 ≥ 0.
Proof Only need to prove necessity. Let 𝑥 ∈ 𝑆 be a vertex of 𝑆.
W.l.o.g., let 𝑥 = (𝑥1 , ..., 𝑥𝑘 , 0, ..., 0)⊤ , where 𝑥𝑖 > 0, 𝑖 = 1, ..., 𝑘.
Let 𝐴 = (𝑎1 , ..., 𝑎𝑛 ) . We claim 𝑎1 , ..., 𝑎𝑘 are linearly indepen-
dent: If there exist non-zero 𝜆1 , ..., 𝜆𝑘 such that

∑𝑘
𝑖=1 𝜆𝑖𝑎𝑖 = 0. Let

𝜆 = (𝜆1 , ..., 𝜆𝑘 , 0, ..., 0)⊤ , let 𝑥1 = 𝑥 + 𝛼𝜆, 𝑥2 = 𝑥 − 𝛼𝜆, then
𝑥 = 1

2 𝑥1 + 1
2 𝑥2 . Appropriate choice of 𝛼 > 0 can make 𝑥1 , 𝑥2 ≥ 0 and

𝑥1 ≠ 𝑥2 . Note that 𝐴𝑥1 = 𝐴𝑥 + 𝛼∑𝑘
𝑖=1 𝜆𝑖𝑎𝑖 = 𝑏, so 𝑥1 ∈ 𝑆. Similarly,

𝑥2 ∈ 𝑆. This contradicts with 𝑥 being a vertex, so 𝑎1 , ..., 𝑎𝑘 are linearly in-
dependent. Because 𝐴 is full row rank, we can always choose 𝑎𝑘+1 , ..., 𝑎𝑚
from 𝑎𝑘+1 , ..., 𝑎𝑛 such that 𝐵 = (𝑎1 , ..., 𝑎𝑚 ) is invertible. Therefore,

𝑥 =

(
𝐵−1𝑏

0

)
, where 𝐵−1𝑏 = (𝑥1 , ..., 𝑥𝑘 , 0, ..., 0)⊤ ≥ 0. □

Theorem 2.4 Let 𝑆 = {𝑥 ∈ R𝑛 | 𝐴𝑥 = 𝑏, 𝑥 ≥ 0} be non-empty, where 𝐴
is full row rank. Then 𝑆 has at least one vertex.
Proof Let 𝑥 ∈ 𝑆, w.l.o.g., let 𝑥 = (𝑥1 , ..., 𝑥𝑘 , 0, ..., 0)⊤ , where 𝑥𝑖 > 0,
𝑖 = 1, ..., 𝑘. If 𝑎1 , ..., 𝑎𝑘 are linearly independent, then 𝑘 ≤ 𝑚, so
by previous Theorem, 𝑥 is a vertex of 𝑆. Otherwise, there exist non-zero
𝜆1 , ..., 𝜆𝑘 such that

∑𝑘
𝑖=1 𝜆𝑖𝑎𝑖 = 0. Without loss of generality, assume

𝜆1 > 0. Let 𝛼 = min
{
𝑥𝑖
𝜆𝑖

| 𝜆𝑖 > 0, 𝑖 = 1, ..., 𝑘
}
. Construct �̄� as fol-

lows: �̄�𝑖 = 𝑥𝑖 − 𝛼𝜆𝑖 , 𝑖 = 1, ..., 𝑘; �̄�𝑖 = 0, 𝑖 = 𝑘 + 1, ..., 𝑛. Then �̄� ∈ 𝑆
and the number of its non-zero components is at most 𝑘 − 1. This process con-
tinues, and we will eventually find �̃� ∈ 𝑆 with linearly independent non-zero
components corresponding to 𝐴, and thus �̃� is a vertex of 𝑆. □
Theorem 2.5 Let 𝑆 = {𝑥 ∈ R𝑛 | 𝐴𝑥 = 𝑏, 𝑥 ≥ 0} be non-empty, where
𝐴 is full row rank. Then 𝑑 ∈ R𝑛 is an extreme direction of 𝑆 iff there
exists a decomposition 𝐴 = (𝐵, 𝑁 ) and the 𝑗-th column 𝑎 𝑗 of 𝑁 such that

𝐵−1𝑎 𝑗 ≤ 0, making 𝑑 = 𝑡

(
−𝐵−1𝑎 𝑗
𝑒 𝑗

)
, where 𝑡 > 0 and 𝑒 𝑗 is the 𝑗-th

unit vector in R𝑛−𝑚 .
Theorem 2.6 Let 𝑆 = {𝑥 ∈ R𝑛 | 𝐴𝑥 = 𝑏, 𝑥 ≥ 0} be
non-empty, where 𝐴 is full row rank. Let the vertices of 𝑆 be
𝑥1 , ..., 𝑥𝑘 , and the extreme directions be 𝑑1 , ..., 𝑑𝑙 . Then 𝑆 ={∑𝑘
𝑖=1 𝜆𝑖 𝑥𝑖 +

∑𝑙
𝑗=1 𝜇 𝑗𝑑 𝑗 |

∑𝑘
𝑖=1 𝜆𝑖 = 1, 𝜆𝑖 ≥ 0, 𝜇 𝑗 ≥ 0, 𝑖 = 1, ..., 𝑘, 𝑗 = 1, ..., 𝑙

}
.

Primal Simplex Algorithm Step 0. Compute initial basic feasible solution

𝑥 =

(
𝐵−1𝑏

0

)
.

Step 1. If 𝑟𝑁 = 𝑐⊤
𝑁

− 𝑐⊤
𝐵
𝐵−1𝑁 ≥ 0, stop; current basic feasible solution

is optimal, otherwise, go to Step 2.
Step 2. Choose 𝑗 such that 𝑐 𝑗 − 𝑐⊤𝐵𝐵

−1𝑎 𝑗 < 0. If �̃� 𝑗 = 𝐵−1𝑎 𝑗 ≤ 0,
stop; the problem is unbounded, otherwise, go to Step 3. (calculate 𝑧 𝑗 ’s and
(𝜎 𝑗 = 𝑐 𝑗 − 𝑧 𝑗 )’s)

Step 3. Compute 𝜆 by (2.11), let 𝑥 := 𝑥 + 𝜆𝑑 𝑗 , where 𝑑 𝑗 =
(
−𝐵−1𝑎 𝑗
𝑒 𝑗

)
.

Return to Step 1. (calculate (𝑏𝑖/𝑎𝑖 𝑗 ) )’s; calculate 𝑧 =
〈
𝑐𝐵 , 𝑏

〉
)

Example:
max 50𝑥1 + 100𝑥2
s.t. 𝑥1 + 𝑥2 + 𝑥3 = 300

2𝑥1 + 𝑥2 + 𝑥4 = 400
𝑥2 + 𝑥5 = 250

Basis 𝐶𝐵 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑏 𝑏𝑖/𝑎𝑖 𝑗
𝑥3 0 1 1 1 0 0 300 300/1
𝑥4 0 2 1 0 1 0 400 400/1
𝑥5 0 0 1 0 0 1 250 250/1
𝑧 𝑗 0 0 0 0 0
𝜎 𝑗 50 100 0 0 0 𝑧 = 0

Basis 𝐶𝐵 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑏 𝑏𝑖/𝑎𝑖 𝑗
𝑥3 0 1 0 1 0 −1 50 50/1
𝑥4 0 2 0 0 1 −1 150 150/2
𝑥2 100 0 1 0 0 1 250 250/0
𝑧 𝑗 0 100 0 0 100
𝜎 𝑗 50 0 0 0 −100 𝑧 = 25𝑘

Basis 𝐶𝐵 𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑏

𝑥1 50 1 0 1 0 −1 50
𝑥4 0 0 0 −2 1 1 50
𝑥2 100 0 1 0 0 1 250
𝑧 𝑗 50 100 50 0 50
𝜎 𝑗 0 0 −50 0 −50 𝑧 = 2.75𝑘

8 Integer Linear Programming
max{𝑐𝑥 + ℎ𝑦 : (𝑥, 𝑦) ∈ 𝑆}

𝑆 := { (𝑥, 𝑦) ∈ Z𝑛+ × R𝑝+ : 𝐴𝑥 +𝐺𝑦 ≤ 𝑏}.
8.1 Examples
Assignment: There are𝑚machines and 𝑛 tasks. The available working hours
for machine 𝑖 is 𝑏𝑖 . The working hours required for machine 𝑖 to complete
task 𝑗 is 𝑎𝑖 𝑗 , and the cost is 𝑐𝑖 𝑗 . How to optimally assign tasks to machines

to minimize the cost? Let 𝑥𝑖 𝑗 =
{
1, if machine 𝑖 processes task 𝑗 ,
0, otherwise.

min
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1
𝑐𝑖 𝑗 𝑥𝑖 𝑗 s.t.

𝑛∑︁
𝑗=1
𝑎𝑖 𝑗 𝑥𝑖 𝑗 ≤ 𝑏𝑖 , 𝑖 = 1, . . . , 𝑚,

𝑚∑︁
𝑖=1

𝑥𝑖 𝑗 = 1, 𝑗 = 1, . . . , 𝑛, 𝑥𝑖 𝑗 ∈ {0, 1}

Set Covering: A certain area is divided into 𝑚 districts, and it is required to
establish 𝑛 emergency service centers. The location of each center is known,
and each center requires a setup cost. Each center can serve a certain range of
districts. How to choose the centers to cover the entire area and minimize the
setup cost? Let 𝑀 = {1, . . . , 𝑚} be the districts and 𝑁 = {1, . . . , 𝑛} be
the candidate centers. Let 𝑆 𝑗 ⊆ 𝑀 be the set of districts that center 𝑗 can
serve, and 𝑐 𝑗 be the setup cost of center 𝑗 . Define the 0-1 matrix 𝐴 = (𝑎𝑖 𝑗 ) ,
where 𝑎𝑖 𝑗 = 1 if 𝑖 ∈ 𝑆 𝑗 , otherwise 𝑎𝑖 𝑗 = 0.
Let 𝑥 𝑗 = 1 if center 𝑗 is selected, 0 otherwise.

min
𝑛∑︁
𝑗=1
𝑐 𝑗 𝑥 𝑗 s.t.

𝑛∑︁
𝑗=1
𝑎𝑖 𝑗 𝑥 𝑗 ≥ 1, 𝑖 = 1, . . . , 𝑚; 𝑥 ∈ {0, 1}𝑛

8.2 Useful Concepts
8.2.1 Unimodular Matrix
Theorem: If the optimal basis matrix 𝐵 of a LP problem satisfies det(𝐵) =
±1, then the optimal solution is an integer solution.
Definition: Let 𝐴 be 𝑚 × 𝑛 integer matrix. If the determinant of any square
submatrix of 𝐴 is 0, 1, or −1, then 𝐴 is called a totally unimodular matrix.
Property: If 𝐴 is totally unimodular, the elements of 𝐴 are 0, 1, or −1.
Proof: Any submatrix of 𝐴 has a determinant of 0, 1, or −1 implies the
elements 𝑎𝑖 𝑗 are 0, 1, or −1. □
Theorem: Let 𝐴 be a totally unimodular matrix and 𝑏 be an integer vector.
Then all vertices of polyhedron 𝑃 = {𝑥 ∈ R𝑛+ | 𝐴𝑥 ≤ 𝑏} are integer points.
Proof: The polyhedron 𝑃 can be represented as 𝐴𝑥 + 𝐼 𝑦 = 𝑏, 𝑥 ∈ R𝑛+ , 𝑦 ∈
R𝑚+ . Let (𝐴, 𝐼 ) = (𝐵, 𝑁 ) , where 𝐵 is the basis matrix. By Property 𝐵−1

is integer matrix, thus 𝑥⊤ = (𝐵−1𝑏, 0)⊤ is integer vector. Since vertices of
the polyhedron correspond to basic feasible solutions, 𝑃 has integer vertices.
Corollary: 𝐴 totally unimodular, and 𝑏 and 𝑐 integer vectors. If max{𝑐⊤𝑥 |
𝐴𝑥 ≤ 𝑏, 𝑥 ∈ R𝑛+ } and its dual min{𝑏⊤𝑦 | 𝐴⊤𝑦 ≥ 𝑐, 𝑦 ∈ R𝑚+ } have
optimal solutions, then the optimal solutions must be at integer vertices.
Theorem: If for any integer vector 𝑏, the vertices of polyhedron 𝑃 = {𝑥 ∈
R𝑛+ | 𝐴𝑥 ≤ 𝑏} are integer points, then 𝐴 is a totally unimodular matrix.
Take any 𝑘 × 𝑘 non-singular submatrix 𝐴1 of 𝐴. Since (𝐴, 𝐼 ) is row
complete, there exists an 𝑚 × 𝑚 non-singular submatrix of (𝐴, 𝐼 ) of the

form �̃� =

(
𝐴1 0
𝐴2 𝐼𝑚−𝑘

)
. Let 𝑏 = �̃�𝑧 + 𝑒𝑖 , where 𝑧 ∈ Z𝑚 . Then

�̃�−1𝑏 = 𝑧 + �̃�−1
𝑖

, where �̃�−1
𝑖

represents the 𝑖th column of �̃�−1 . By ap-
propriate choice of 𝑧 such that 𝑧 + �̃�−1

𝑖
≥ 0, it is clear that 𝑧 + �̃�−1

𝑖
is the

direction vector formed by the basic variable components of the vertices of 𝑃.
By assumption, 𝑧 + �̃�−1

𝑖
∈ Z𝑚 , hence �̃�−1

𝑖
∈ Z𝑚 . Thus, �̃�−1 is an integer

matrix, and therefore 𝐴−1
1 is an integer matrix. Since 𝐴1 and 𝐴−1

1 are integer
matrices, det(𝐴1 ) and det(𝐴−1

1 ) are integers. Moreover,
| det(𝐴1 ) | · | det(𝐴−1

1 ) | = | det(𝐴1𝐴
−1
1 ) | = 1,

hence | det(𝐴1 ) | = 1. Thus, matrix 𝐴 is totally unimodular. □
Corollary: 𝐴 is totally unimodular iff for integer vectors 𝑎, 𝑏, 𝑐, 𝑑, the
vertices of polyhedron {𝑥 | 𝑎 ≤ 𝑥 ≤ 𝑏, 𝑐 ≤ 𝐴𝑥 ≤ 𝑑} are integer points.
8.2.2 Bipartite Graph
Undirected graph 𝐺 = (𝑉, 𝐸 ) , define the incidence matrix 𝑀 of 𝐺, where
the rows and columns are labeled by the vertex set 𝑉 and edge set 𝐸 respec-
tively. If 𝑒 is incident to vertex 𝑣, then 𝑀𝑣,𝑒 = 1; otherwise, 𝑀𝑣,𝑒 = 0.
If the vertex set 𝑉 of a graph 𝐺 = (𝑉, 𝐸 ) can be partitioned into two non-
empty subsets 𝑉1 and 𝑉2 such that the two endpoints of each edge belong to
𝑉1 and 𝑉2 respectively, then the graph is called a bipartite graph.
Theorem: 𝑀 is totally unimodular iff graph𝐺 is a bipartite graph.
Independent set: a set of vertices in a graph, no two of which are adjacent.
Edge cover: a set of edges such that every vertex of the graph is on at least
one edge of the set.
Matching 𝑀: a set of edges without common vertices.
Vertex cover 𝑅: a set of vertices that includes at least one endpoint of every
edge. |𝑀 | ≤ |𝑅 |
Let 𝑀 be the incidence matrix of the bipartite graph𝐺 = (𝑉, 𝐸 ) , we obtain
max{𝑒⊤𝑦 | 𝑀𝑦 ≤ 𝑒, 𝑦 ∈ Z|𝑉 |

+ } = min{𝑒⊤𝑥 | 𝑀⊤𝑥 ≥ 𝑒, 𝑥 ∈ Z|𝐸 |
+ },

Suppose each vertex in graph is incident to at least one edge, the max number
of independent vertices = the min number of edges in a edge cover.
Similarly, by total unimodularity of the incidence matrix of a bipartite graph,
max{𝑒⊤𝑥 | 𝑀⊤𝑥 ≤ 𝑒, 𝑥 ∈ Z|𝐸 |

+ } = min{𝑒⊤𝑦 | 𝑀𝑦 ≥ 𝑒, 𝑦 ∈ Z|𝑉 |
+ }.

The above equation shows that the maximum number of edges in a matching
= the minimum number of vertices in a vertex cover.

8.3 The Transportation and assignment problems
8.3.1 Matching and Assignment on Graph𝐺 = (𝑉, 𝐸 )
Definition: A subset 𝑀 of the edges of 𝐺 is called a matching if no two
edges in 𝑀 share a common vertex (any vertex of𝐺 is incident to at most one
edge of 𝑀). If vertex 𝑢 is incident to any edges in 𝑀 , then 𝑢 is M-exposed.
Definition: Given a subset of vertices 𝑅 ⊆ 𝑉 , if every edge in 𝐸 has at least
one vertex in 𝑅, then 𝑅 is called a vertex cover of𝐺.
Definition: If every vertex in𝐺 is matched by an edge in 𝑀 , then 𝑀 is called
a perfect matching. If there is no other matching𝑀′ such that |𝑀′ | > |𝑀 | ,
then 𝑀 is called a maximum matching. Clearly, every perfect matching is a
maximum matching.
Theorem: Given a graph 𝐺, for any matching 𝑀 and any vertex cover 𝑅, it
always holds that |𝑀 | ≤ |𝑅 | .
Definition: Given a matching 𝑀 in 𝐺, if a path 𝑃 alternates between edges
in 𝑀 and 𝐸 \ 𝑀 , then 𝑃 is called an alternating path w.r.t. 𝑀 . If the start



and end vertices of 𝑃 are not adjacent with edges in 𝑀 , then 𝑃 is called an
augmenting path w.r.t. 𝑀 .
Theorem: 𝑀 is max matching iff there’re no augmenting paths w.r.t. 𝑀 .
Maximum Matching Algorithm:
0. Given a bipartite graph 𝐺 = (𝑉1 , 𝑉2 , 𝐸 ) , let 𝑀 be a matching of 𝐺.

All vertices are unmarked and unchecked.
1. 1.0 Mark all M-unexposed vertices in 𝑉1 with ∗.

1.1 If all marked vertices are checked, go to Step 3. Otherwise, select a
marked unchecked vertex 𝑖. If 𝑖 ∈ 𝑉1 , go to Step 1.2. If 𝑖 ∈ 𝑉2 , go
to Step 1.3.

1.2 Check all edges (𝑖, 𝑗 ) incident to 𝑖 ∈ 𝑉1 . If (𝑖, 𝑗 ) ∈ 𝐸 \𝑀 and 𝑗
is unmarked, mark 𝑗 as 𝑖. Go to Step 1.1.

1.3 Check all edges ( 𝑗 , 𝑖) incident to 𝑖 ∈ 𝑉2 . If 𝑖 is M-unexposed, go to
Step 2. Otherwise, find edge ( 𝑗 , 𝑖) ∈ 𝑀 where 𝑗 is unmarked, mark
𝑗 as 𝑖. Go to Step 1.1.

2. Starting from 𝑖 ∈ 𝑉2 , use the marked vertices to find an augmenting path
𝑃. Let 𝑀 := (𝑀 ∪ 𝑃) \ (𝑀 ∩ 𝑃) . Remove all marks and go to Step 1.

3. Let 𝑉+
1 and 𝑉+

2 denote the marked vertices in 𝑉1 and 𝑉2 , 𝑉−
1 and 𝑉−

2
denote the unmarked vertices. The algorithm terminates.

Result: 𝑅 = 𝑉−
1 ∪𝑉+

2 is a cover of𝐺; |𝑀 | = |𝑅 | , and 𝑀 is max matching.
Assignment Problem:
Suppose a company is preparing to assign 𝑛 workers 𝑋1 , . . . , 𝑋𝑛 to 𝑛
tasks 𝑌1 , . . . , 𝑌𝑛 . Consider a weighted complete bipartite graph 𝐺 =
(𝑉1 , 𝑉2 , 𝐸 ) , where 𝑉1 = {𝑋1 , . . . , 𝑋𝑛 }, 𝑉2 = {𝑌1 , . . . , 𝑌𝑛 }, and
weight 𝑐𝑖 𝑗 on edge (𝑋𝑖 , 𝑌𝑗 ) represents the efficiency of worker 𝑋𝑖 com-
pleting task𝑌𝑗 . Equivalent to finding a perfect matching with max weight.

max
∑𝑛
𝑖=1

∑𝑛
𝑗=1 𝑐𝑖 𝑗 𝑥𝑖 𝑗

s.t.
∑𝑛
𝑗=1 𝑥𝑖 𝑗 = 1, 𝑖 = 1, 2, . . . , 𝑛,∑𝑛
𝑖=1 𝑥𝑖 𝑗 = 1, 𝑗 = 1, 2, . . . , 𝑛,
𝑥𝑖 𝑗 ∈ {0, 1}, 𝑖, 𝑗 = 1, 2, . . . , 𝑛.

Bipartite graph totally unimodular, the last constraint relaxed:
𝑥𝑖 𝑗 ≥ 0, 𝑖, 𝑗 = 1, 2, . . . , 𝑛.

Dual problem:
min

∑𝑛
𝑖=1 𝑢𝑖 +

∑𝑛
𝑗=1 𝑣 𝑗

s.t. 𝑢𝑖 + 𝑣 𝑗 ≥ 𝑐𝑖 𝑗 , 𝑖, 𝑗 = 1, 2, . . . , 𝑛.
Theorem 4.8 By the LP duality theorem, if there exists a feasible solution 𝑥∗
to the assignment problem and a pair 𝑢, 𝑣 that satisfy the following two condi-
tions: (i) �̄�𝑖 𝑗 = 𝑐𝑖 𝑗 − 𝑢𝑖 − 𝑣 𝑗 ≤ 0; (ii) When 𝑥∗

𝑖 𝑗
= 1, �̄�𝑖 𝑗 = 0, then 𝑥∗ is

the optimal assignment solution, and the optimal value is
∑𝑛
𝑖=1 𝑢𝑖 +

∑𝑛
𝑗=1 𝑣 𝑗 .

Assignment Problem Algorithm:
0. Given an initial 𝑢, 𝑣 satisfying �̄�𝑖 𝑗 ≤ 0, 𝑖, 𝑗 = 1, 2, . . . , 𝑛. Let
�̄� = { (𝑖, 𝑗 ) ∈ 𝐸 | �̄�𝑖 𝑗 = 0}. Use Algorithm to find the maximum
matching 𝑀∗ in bipartite graph �̄� = (𝑉1 , 𝑉2 , �̄� ) . If |𝑀∗ | = 𝑛, the
algorithm ends and 𝑀∗ is the optimal assignment solution. Otherwise,
record 𝑀 = 𝑀∗ and the marked vertex sets 𝑉+

1 , 𝑉
+
2 . Go to Step 2.

1. (Original). Let �̄� = { (𝑖, 𝑗 ) ∈ 𝐸 | �̄�𝑖 𝑗 = 0}. Based on the matched 𝑀
and marked vertex sets 𝑉+

1 , 𝑉
+
2 , continue to find the maximum matching

𝑀∗ in �̄� = (𝑉1 , 𝑉2 , �̄� ) . If |𝑀∗ | = 𝑛, the algorithm terminates and
𝑀∗ is the optimal assignment solution. Otherwise, record 𝑀 = 𝑀∗ and
𝑉+

1 , 𝑉
+
2 , then go to Step 2.

2. (Dual). let 𝛿 = min{−�̄�𝑖 𝑗 | 𝑖 ∈ 𝑉+
1 , 𝑗 ∈ 𝑉2 \ 𝑉+

2 }; for all 𝑖 ∈ 𝑉+
1 ,

let 𝑢𝑖 := 𝑢𝑖 − 𝛿; for all 𝑗 ∈ 𝑉+
2 , let 𝑣 𝑗 := 𝑣 𝑗 + 𝛿. Go to Step 1.

8.3.2 Transportation Problem
Problem: A certain product has𝑚 production sites, denoted as 𝐴1 , . . . , 𝐴𝑚 ,
with production quantities 𝑎1 , . . . , 𝑎𝑚 . There are 𝑛 sales sites, denoted as
𝐵1 , . . . , 𝐵𝑛 , with sales quantities 𝑏1 , . . . , 𝑏𝑛 . Suppose the unit transporta-
tion cost from production site 𝐴𝑖 to sales site 𝐵 𝑗 is 𝑐𝑖 𝑗 . How should these
products be transported to minimize the total cost?

min
𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1
𝑐𝑖 𝑗 𝑥𝑖 𝑗 s.t.

𝑛∑︁
𝑗=1
𝑥𝑖 𝑗 = 𝑎𝑖 , ∀1 ≤ 𝑖 ≤ 𝑚

𝑚∑︁
𝑖=1

𝑥𝑖 𝑗 = 𝑏 𝑗 , ∀1 ≤ 𝑗 ≤ 𝑛

𝑥𝑖 𝑗 ≥ 0, ∀𝑖 = 1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑛
Assume

∑𝑚
𝑖=1 𝑎𝑖 =

∑𝑛
𝑗=1 𝑏 𝑗 = 𝑄 (Balanced transportation problem)

It’s a special case of minimum cost network flow problem.
Dual problem: max

∑𝑚
𝑖=1 𝑎𝑖𝑢𝑖 +

∑𝑛
𝑗=1 𝑏 𝑗 𝑣 𝑗 s.t. 𝑢𝑖 + 𝑣 𝑗 ≤ 𝑐𝑖 𝑗

⇒ 𝑐𝑖 𝑗 − (𝑢𝑖 + 𝑣 𝑗 ) ≥ 0 (𝑖 = 1, 2, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑛)
Algorithm:
1. Find the Minimum Spanning Tree (The basic feasible solution corresponds
to a spanning tree; find the arcs with the minimum costs first).
2. Find a dual solution by solving 𝑐𝑖 𝑗 = 𝑢𝑖 + 𝑣 𝑗 and let 𝑣𝑛 = 0.
3. Calculate Verification Number: 𝜎𝑖 𝑗 = 𝑐𝑖 𝑗 − (𝑢𝑖 + 𝑣 𝑗 ) , ∀𝑖, 𝑗 . If all
𝜎𝑖 𝑗 ’s are non-negative, then terminate; otherwise go to step 4.
4. Let �̄�𝑠𝑡 = min

𝑖, 𝑗
{�̄�𝑖 𝑗 |�̄�𝑖 𝑗 < 0}. Add arc (𝑠, 𝑡 ) into the spanning tree

found in step 1 and let 𝑥𝑠𝑡 = 𝜃 to remove an arc. Get an improved spanning
tree, go to step 2.

8.4 Graph and Network Flows
8.4.1 Shortest Path Problem
Directed graph𝐷 = (𝑉, 𝐴) , let 𝑐𝑢,𝑣 represent the weight on arc (𝑢, 𝑣) ∈ 𝐴
(length of the arc). Solve the shortest 𝑠 − 𝑡 path problem:

min
∑

(𝑢,𝑣) ∈𝐴
𝑐𝑢,𝑣 𝑥𝑢,𝑣

s.t.
∑

𝑢∈𝑉+ (𝑣)
𝑥𝑣,𝑢 − ∑

𝑢∈𝑉− (𝑣)
𝑥𝑢,𝑣 = 1, 𝑣 = 𝑠,∑

𝑢∈𝑉+ (𝑣)
𝑥𝑣,𝑢 − ∑

𝑢∈𝑉− (𝑣)
𝑥𝑢,𝑣 = 0, ∀𝑣 ∈ 𝑉 \ {𝑠, 𝑡 },∑

𝑢∈𝑉+ (𝑣)
𝑥𝑣,𝑢 − ∑

𝑢∈𝑉− (𝑣)
𝑥𝑢,𝑣 = −1, 𝑣 = 𝑡 ,

𝑥 ∈ Z|𝐴|+ .

By total unimodularity, LP relaxation of problem has integral optimal solution.

Dual Problem: max 𝜋𝑡 − 𝜋𝑠
s.t. 𝜋𝑣 − 𝜋𝑢 ≤ 𝑐𝑢,𝑣 , ∀(𝑢, 𝑣) ∈ 𝐴.

Theorem: 𝑧 is length of shortest 𝑠 − 𝑡 path iff there exists 𝜋 = (𝜋𝑣 )𝑣∈𝑉
satisfying 𝜋𝑠 = 0, 𝜋𝑡 = 𝑧, 𝜋𝑣 − 𝜋𝑢 ≤ 𝑐𝑢,𝑣 , where (𝑢, 𝑣) ∈ 𝐴.
Dijkstra Algorithm:

Bellman-Ford Algorithm (allowing negative length):

Floyd-Warshall Algorithm (all-pairs shortest paths):

8.4.2 Maximum Flow-Minimum Cut Problem
Incidence matrix: Directed graph 𝐷 = (𝑉, 𝐴) , where 𝑉 represents set of
vertices and 𝐴 represents set of arcs, (𝑢, 𝑣) ∈ 𝐴 indicates an arc from 𝑢 to
𝑣. Let 𝑀 be the 𝑉 × 𝐴 incidence matrix of the graph. If 𝑎 flows into 𝑣, then
𝑀𝑣,𝑎 = 1; if 𝑎 flows out of 𝑣, then 𝑀𝑣,𝑎 = −1; otherwise, 𝑀𝑣,𝑎 = 0.
Theorem: The incidence matrix 𝑀 of a 𝐷 = (𝑉, 𝐴) is totally unimodular.
Circulation: For any 𝑥 ∈ R|𝐴|

+ that satisfies𝑀𝑥 = 0, the following holds for
any 𝑣:

∑
𝑢∈𝑉− (𝑣) 𝑥𝑢,𝑣 =

∑
𝑢∈𝑉+ (𝑣) 𝑥𝑣,𝑢 , where 𝑥 can be viewed as a

circulation in the graph𝑀 , and the inflow and outflow at each vertex are equal.
Since 𝑀 is totally unimodular, for any integer vector 𝑐 ∈ Z|𝐴|+ , polyhedron
𝑃 = {𝑥 | 𝑀𝑥 = 0, 0 ≤ 𝑥 ≤ 𝑐} has integer vertices. Therefore, if there is
a circulation 𝑥 s.t. 0 ≤ 𝑥 ≤ 𝑐, then there must exist an integer circulation.
Circulation Problem: Let 𝑓𝑢,𝑣 denote the profit per unit flow on arc (𝑢, 𝑣) .
Then the maximum profit circulation problem with capacity constraints can

be formulated as: max{ 𝑓⊤𝑥 | 𝑀𝑥 = 0, 𝑥 ≤ 𝑐, 𝑥 ∈ R|𝐴|
+ }, i.e.,

− min
〈
[− 𝑓 , 0], [𝑥, 𝑠]

〉
, s.t.

[
𝑀⊤ 𝑂
𝐼 𝐼

] [
𝑥
𝑠

]
=

[
0
𝑐

]
.

Its dual problem is: min{𝑐⊤𝑦 | 𝑀⊤𝑧 + 𝑦 ≥ 𝑓 , 𝑦 ∈ R𝐴+ , 𝑧 ∈ R|𝑉 | }.
By Corollary, if above two problems have optimal solutions, they must attain
optimal values at integer vertices, and their objective function values are equal.
Maximum Flow Problem: Suppose for a directed graph there exists an arc
(𝑡 , 𝑠) with unit profit 𝑓𝑡,𝑠 = 1, and other arcs (𝑢, 𝑣) have 𝑓𝑢,𝑣 = 0. If
𝑐𝑡,𝑠 = +∞, problem reformulated:

max 𝑥𝑡,𝑠

s.t.
∑︁

𝑢∈𝑉− (𝑣)
𝑥𝑢,𝑣 −

∑︁
𝑢∈𝑉+ (𝑣)

𝑥𝑣,𝑢 = 0, ∀𝑣 ∈ 𝑉,

0 ≤ 𝑥𝑢,𝑣 ≤ 𝑐𝑢,𝑣 , ∀(𝑢, 𝑣) ∈ 𝐴.
Consider 𝐷′ = (𝑉, 𝐴) , where 𝐴 does not contain arc (𝑡 , 𝑠) . The above
problem can be seen as the maximum flow problem from 𝑠 to 𝑡 in the graph
𝐷′ , with arc (𝑡 , 𝑠) added artificially. The dual problem of above formulated:

min
∑︁

(𝑢,𝑣)≠(𝑡,𝑠)
𝑐𝑢,𝑣 𝑦𝑢,𝑣

s.t. 𝑧𝑢 − 𝑧𝑣 ≤ 𝑦𝑢,𝑣 , ∀(𝑢, 𝑣) ≠ (𝑡 , 𝑠) or ∀(𝑢, 𝑣) ∈ 𝐴,
𝑧𝑡 ≥ 𝑧𝑠 + 1.

Let𝑈 = {𝑣 ∈ 𝑉 | 𝑧𝑣 < 𝑧𝑡 } and �̄� = 𝑉 \𝑈 = {𝑣 ∈ 𝑉 | 𝑧𝑣 ≥ 𝑧𝑡 }.
For any arc (𝑢, 𝑣) ∈ 𝐴, if 𝑢 ∈ 𝑈 and 𝑣 ∈ �̄�, then 𝑦𝑢,𝑣 ≥ 𝑧𝑣 − 𝑧𝑢 ≥
𝑧𝑡 − 𝑧𝑠 ≥ 1. Thus, the following holds:∑
(𝑢,𝑣) ∈𝐴 𝑐𝑢,𝑣 𝑦𝑢,𝑣 ≥ ∑

(𝑢,𝑣) ∈𝐴,𝑢∈𝑈,𝑣∈�̄� 𝑐𝑢,𝑣 𝑦𝑢,𝑣 ≥ ∑
... 𝑐𝑢,𝑣 .

Construct a feasible solution �̂� as follows: when (𝑢, 𝑣) ∈ 𝐴 and 𝑢 ∈ 𝑈,
𝑣 ∈ �̄�, set �̂�𝑢,𝑣 = 1; otherwise, set �̂�𝑢,𝑣 = 0. Therefore, �̂� is an optimal
0-1 solution to problem. Thus, problem can be viewed as the minimum 𝑠 − 𝑡
cut problem in the directed graph 𝐷′ .
min𝑈

{∑
(𝑢,𝑣) ∈𝐴,𝑢∈𝑈,𝑣∈�̄� 𝑐𝑢,𝑣 | 𝑠 ∈ 𝑈, 𝑡 ∈ �̄�

}
.

Theorem (with constraints,) The maximum 𝑠 − 𝑡 flow problem and the mini-
mum 𝑠 − 𝑡 cut problem are dual to each other and optimal values are equal.
Algorithm: Start with zero flow. residual network RN=N
Repeat: choose an appropriate path from 𝑠 to 𝑡 , and increase flow along
the edges of this path as much as possible. update the residual network RN
𝐺 𝑓 = (𝑉, 𝐸 𝑓 ) until no s-t path, where residual capacities 𝑐 𝑓 :

𝑐
𝑓
𝑢𝑣 =

{
𝑐𝑢𝑣 − 𝑓𝑢𝑣 if (𝑢, 𝑣) ∈ 𝐸 and 𝑓𝑢𝑣 < 𝑐𝑢𝑣
𝑓𝑣𝑢 if (𝑣, 𝑢) ∈ 𝐸 and 𝑓𝑣𝑢 > 0

8.4.3 Minimum Cost Network Flow Problem
Problem: Given a directed graph 𝐷 = (𝑉, 𝐴) , let ℎ𝑢,𝑣 represent the maxi-
mum capacity of arc (𝑢, 𝑣) , 𝑏𝑣 represent the demand at vertex 𝑣, and 𝑐𝑢,𝑣
represent the cost per unit flow on arc (𝑢, 𝑣) . Let
𝑉+ (𝑣) = {𝑢 ∈ 𝑉 | (𝑣, 𝑢) ∈ 𝐴}, 𝑉− (𝑣) = {𝑢 ∈ 𝑉 | (𝑢, 𝑣) ∈ 𝐴}.
Then the minimum cost network flow problem can be formulated as

min
∑︁

(𝑢,𝑣) ∈𝐴
𝑐𝑢,𝑣 𝑥𝑢,𝑣

s.t.
∑︁

𝑢∈𝑉+ (𝑣)
𝑥𝑣,𝑢 −

∑︁
𝑢∈𝑉− (𝑣)

𝑥𝑢,𝑣 = 𝑏𝑣 , ∀𝑣 ∈ 𝑉,

0 ≤ 𝑥𝑢,𝑣 ≤ ℎ𝑢,𝑣 , ∀(𝑢, 𝑣) ∈ 𝐴.
The above problem can be formulated min{𝑐⊤𝑥 | 𝑀𝑥 = 𝑏, 0 ≤ 𝑥 ≤ ℎ}.
If the problem is feasible, the sum of demands must be 0, i.e.,

∑
𝑣∈𝑉 𝑏𝑣 = 0.

If the capacities ℎ𝑢,𝑣 and demands 𝑏𝑣 are integers, by the total unimodularity
of 𝑀 , the problem has an integer optimal solution.
Algorithm for Min-Cost-Max-Flow Problem:
1. Set the initial feasible flow to zero.
2. According to step 𝑘 − 1, obtain the minimum cost flow 𝑓 (𝑘−1) , and
construct the graph 𝐿 ( 𝑓 (𝑘−1) ) (similar to RN, but with cost as weight).
3. In 𝐿 ( 𝑓 (𝑘−1) ) , find the shortest path from 𝑣𝑠 to 𝑣𝑡 . If no shortest path
exists, then 𝑓 (𝑘−1) is the minimum cost maximum flow, and terminates.
If a shortest path exists, get the corresponding augmenting chain in the graph
𝑓 (𝑘−1) , and proceed to step 4.
4. On the augmenting chain, adjust 𝑓 (𝑘−1) with the adjustment quantity 𝜃 :
𝜃 = min

[
min(𝑣𝑖 ,𝑣𝑗 ) ∈𝜇+

(
𝑐𝑖 𝑗 − 𝑓

(𝑘−1)
𝑖 𝑗

)
,min(𝑣𝑖 ,𝑣𝑗 ) ∈𝜇−

(
𝑓
(𝑘−1)
𝑖 𝑗

)]
𝑓
(𝑘)
𝑖 𝑗

=


𝑓
(𝑘−1)
𝑖 𝑗

+ 𝜃 (𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝜇+

𝑓
(𝑘−1)
𝑖 𝑗

− 𝜃 (𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝜇−

𝑓
(𝑘−1)
𝑖 𝑗

(𝑣𝑖 , 𝑣 𝑗 ) ∉ 𝜇
5. Repeat the above steps for 𝑓 (𝑘) , returning to step 2.

8.5 Dynamic Programming
8.5.1 Shortest Path and Principle of Optimality
Property: Suppose the shortest path from 𝑠 to 𝑡 passes through node 𝑝. Then
the sub-paths (𝑠, 𝑝) and (𝑝, 𝑡 ) are the shortest paths from 𝑠 to 𝑝 and from
𝑝 to 𝑡 , respectively.
Property: Let 𝑑 (𝑣) be the shortest path from 𝑠 to 𝑣, then
𝑑 (𝑣) = min𝑖∈𝑉− (𝑣) {𝑑 (𝑖) + 𝑐𝑖𝑣 }, where 𝑉− (𝑣) denotes the set of all
nodes that can reach node 𝑣 directly.
Let 𝐷𝑘 (𝑖) represent the shortest path from 𝑠 to 𝑖 that contains at most 𝑘
isolated paths. It can be derived by the following recursive formula:
𝐷𝑘 ( 𝑗 ) = min{𝐷𝑘−1 ( 𝑗 ) ,min𝑖∈𝑉− ( 𝑗) [𝐷𝑘−1 (𝑖) + 𝑐𝑖 𝑗 ] }.
Principle of Optimality: An optimal decision for a multi-stage decision prob-
lem is one in which each stage’s decision is also optimal.
8.5.2 Knapsack Problem (13Q3)
0-1 Knapsack Problem:

There is a knapsack with a capacity of 𝑏. Consider 𝑛 items, where the weight
of item 𝑗 is 𝑎 𝑗 and the value is 𝑐 𝑗 . How to choose items to maximize the
total value in the knapsack?
Let 𝑥 𝑗 = 1 if item 𝑗 is selected, 0 otherwise.

𝑓 ∗ = max
{∑𝑛
𝑗=1 𝑐 𝑗 𝑥 𝑗

���∑𝑛
𝑗=1 𝑎 𝑗 𝑥 𝑗 ≤ 𝑏, 𝑥 ∈ {0, 1}𝑛

}
,

where 𝑛, 𝑏, 𝑐 𝑗 , 𝑎 𝑗 , 𝑗 = 1, . . . , 𝑛 are positive integers.
Algorithm: The knapsack problem can be seen as selecting the items from 1
to 𝑛 in sequence. For 𝑘 = 1, . . . , 𝑛, and 𝜆 = 0, 1, . . . , 𝑏, define
𝑓𝑘 (𝜆) = max

{∑𝑘
𝑗=1 𝑐 𝑗 𝑥 𝑗

���∑𝑘
𝑗=1 𝑎 𝑗 𝑥 𝑗 ≤ 𝜆, 𝑥 ∈ {0, 1}𝑘

}
.

It is easy to see that 𝑓 ∗ = 𝑓𝑛 (𝑏) .
We can use the recursive method to find 𝑓𝑛 , that is, use 𝑓𝑛−1 to calculate 𝑓𝑛 ,
use 𝑓𝑛−2 to calculate 𝑓𝑛−1 , and so on. The initial condition for recursion is

𝑓1 (𝜆) =
{
𝑐1 , if 𝑎1 ≤ 𝜆,
0, if 𝑎1 > 𝜆.

When 𝜆 ≥ 0, 𝑓0 (𝜆) = 0. For 𝑘 = 2, . . . , 𝑛, 𝜆 = 0, 1, . . . , 𝑏,

𝑓𝑘 (𝜆) =
{
𝑓𝑘−1 (𝜆) , if 𝑎𝑘 > 𝜆,
max{ 𝑓𝑘−1 (𝜆) , 𝑐𝑘 + 𝑓𝑘−1 (𝜆 − 𝑎𝑘 ) }, if 𝑎𝑘 ≤ 𝜆.

Backtrack to find the optimal solution:

𝑥∗𝑛 =

{
0, 𝑓𝑛 (𝑏) = 𝑓𝑛−1 (𝑏) ,
1, otherwise.

Let 𝜆∗
𝑘
= 𝑏 − ∑𝑛

𝑗=𝑘+1 𝑎 𝑗 𝑥
∗
𝑗
, then for 𝑘 = 𝑛 − 1, . . . , 1, we have

𝑥∗
𝑘
=

{
0, 𝑓𝑘 (𝜆∗𝑘 ) = 𝑓𝑘−1 (𝜆∗𝑘 ) ,
1, otherwise.

Linear Integer Knapsack Problem (with repetition):
𝑧∗ = max

{∑𝑛
𝑗=1 𝑐 𝑗 𝑥 𝑗

���∑𝑛
𝑗=1 𝑎 𝑗 𝑥 𝑗 ≤ 𝑏, 𝑥 ∈ Z𝑛+

}
,

Method 1:
𝑔𝑟 (𝜆) = max

{∑𝑟
𝑗=1 𝑐 𝑗 𝑥 𝑗

���∑𝑟
𝑗=1 𝑎 𝑗 𝑥 𝑗 ≤ 𝜆, 𝑥 ∈ Z𝑟+

}
.

It is easy to see 𝑧∗ = 𝑔𝑛 (𝑏) . 𝑔𝑟 (𝜆) = max{𝑔𝑟−1 (𝜆) , 𝑐𝑟 +𝑔𝑟 (𝜆−𝑎𝑟 ) }.
Backtrack to find the optimal solution:

𝑝𝑟 (𝜆) =
{
0, 𝑔𝑟 (𝜆) = 𝑔𝑟−1 (𝜆) ,
1 + 𝑝𝑟 (𝜆 − 𝑎𝑟 ) , otherwise.

𝑥∗𝑛 = 𝑝𝑛 (𝑏) .
Let 𝜆∗

𝑘
= 𝑏 − ∑𝑛

𝑗=𝑘+1 𝑎 𝑗 𝑥
∗
𝑗
, then for 𝑘 = 𝑛 − 1, . . . , 1, 𝑥∗

𝑘
= 𝑝𝑘 (𝜆∗𝑘 ) .

Method 2: For 𝜆 = 0 to 𝑏: 𝑧 (𝜆) = max 𝑗:𝑎𝑗 ≤𝜆 𝑧 (𝜆 − 𝑎 𝑗 ) + 𝑐 𝑗 .
Method 3: Consider it as a longest path problem. Construct a DAG
𝐷 = (𝑉, 𝐴) , with vertices 0, 1, . . . , 𝑏, and arcs (𝜆, 𝜆 + 𝑎 𝑗 ) , 𝜆 ∈ Z+ ,
𝜆 ≤ 𝑏 − 𝑎 𝑗 ( 𝑗 = 1, . . . , 𝑛) , with weights 𝑐 𝑗 , and arcs (𝜆, 𝜆 + 1) ,
𝜆 ∈ Z+ , 𝜆 ≤ 𝑏 − 1, with weight 0. Then 𝑧 (𝜆) is the longest path from
vertex 0 to vertex 𝜆. Figure gives a directed graph for the following example:

max 10𝑥1 + 7𝑥2 + 25𝑥3 + 24𝑥4 ,
s.t. 2𝑥1 + 𝑥2 + 6𝑥3 + 5𝑥4 ≤ 7; 𝑥 ∈ Z4

+ .

paths with zero length are omitted.
8.5.3 Investment Allocation Problem:
With $10W capital, invest in three projects with benefits given by 𝑔1 (𝑥1 ) =
4𝑥1 , 𝑔2 (𝑥2 ) = 9𝑥2 , 𝑔3 (𝑥3 ) = 2𝑥2

3 . How should the investment amounts

be allocated?
max 4𝑥1 + 9𝑥2 + 2𝑥2

3 s.t. 𝑥1 + 𝑥2 + 𝑥3 = 10

𝑥𝑖 ≥ 0, 𝑖 = 1, 2, 3
State: At stage 𝑘, the available amount 𝑠𝑘 , with 𝑠1 = 10.
Decision: At stage 𝑘, the actual investment amount 𝑥𝑘 = 𝑢𝑘 (𝑠𝑘 ) .
Allowed Decision Set: 0 ≤ 𝑥𝑘 ≤ 𝑠𝑘 .
Stage Objective: 4𝑥1 , 9𝑥2 , 2𝑥2

3 .
State Transition Equation: 𝑠𝑘+1 = 𝑠𝑘 − 𝑥𝑘 .
Backward Solution:
𝑓𝑘 (𝑠𝑘 ) = max0≤𝑥𝑘 ≤𝑠𝑘 {𝑑𝑘 (𝑠𝑘 , 𝑥𝑘 ) + 𝑓𝑘+1 (𝑇𝑘 (𝑠𝑘 , 𝑥𝑘 ) ) }.
𝑓4 (𝑠4 ) = 0
𝑓3 (𝑠3 ) = max0≤𝑥3≤𝑠3 2𝑥2

3 ⇒ 𝑢∗3 (𝑠3 ) = 𝑠3 , 𝑓3 (𝑠3 ) = 2(𝑠2 − 𝑥2 )2

𝑓2 (𝑠2 ) = max0≤𝑥2≤𝑠2

(
9𝑥2 + 2(𝑠2 − 𝑥2 )2

)
Since the objective function is convex, 𝑓2 (𝑠2 ) = max{2𝑠2

2 , 9𝑠2 }.

Thus, if 𝑠2 ≥ 9
2 , then 𝑢∗2 (𝑠2 ) = 0, 𝑓2 (𝑠2 ) = 2𝑠2

2 ;

if 𝑠2 < 9
2 , then 𝑢∗2 (𝑠2 ) = 𝑠2 , 𝑓2 (𝑠2 ) = 9𝑠2

𝑓1 (10) = max0≤𝑥1≤10 (4𝑥1 + 𝑓2 (10 − 𝑥1 ) ) , where

𝑓2 (10 − 𝑥1 ) =
{

2(10 − 𝑥1 )2 , if 𝑥1 ≤ 11
2

9(10 − 𝑥1 ) , if 𝑥1 >
11
2

For 0 ≤ 𝑥1 ≤ 11
2 , the objective function is convex, so

𝑓1 (10) = max
{
2 × 102 , 4 × 11

2 + 2 ×
(
10 − 11

2

)2
}
= 200

For 11
2 < 𝑥1 ≤ 10, the objective function is 90 − 5𝑥1 , so

𝑢∗1 (10) = 11
2 , 𝑓1 (10) = 90 − 5 × 11

2 = 62.5
Combining both cases, we find 𝑢∗1 (10) = 0, 𝑓1 (10) = 200.
Result: 𝑥∗1 = 𝑢∗1 (10) = 0, 𝑓1 (10) = 200, 𝑠∗2 = 10 − 𝑥∗1 = 10
𝑥∗2 = 𝑢∗2 (10) = 0, 𝑓2 (10) = 2 × 102 = 200, 𝑠∗3 = 10 − 𝑥∗2 = 10
𝑥∗3 = 𝑢∗3 (10) = 10, 𝑓3 (10) = 2 × 102 = 200

8.5.4 TSP
A traveling salesman needs to visit 𝑛 cities to sell his products. He must visit
each city exactly once and return to the starting city. The distance between
each pair of cities is known (if direct travel is not possible, the distance is set
to +∞). How to choose the travel route to minimize the total travel distance?
Let 𝑐𝑖 𝑗 be the distance from city 𝑖 to city 𝑗 . Let

𝑥𝑖 𝑗 =

{
1, if the route includes traveling directly from city 𝑖 to city 𝑗 ,
0, otherwise.

min
𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1
𝑐𝑖 𝑗 𝑥𝑖 𝑗

s.t.
∑︁
𝑗≠𝑖

𝑥𝑖 𝑗 = 1, 𝑖 = 1, . . . , 𝑛,∑︁
𝑖≠ 𝑗

𝑥𝑖 𝑗 = 1, 𝑗 = 1, . . . , 𝑛, 𝑥 ∈ {0, 1}𝑛∑︁
𝑖∈𝑆

∑︁
𝑗∈𝑆

𝑥𝑖 𝑗 ≤ |𝑆 | − 1, ∀𝑆 ⊂ 𝑁, 2 ≤ |𝑆 | ≤ 𝑛 − 1

8.5.5 Stochastic Shortest Path Problem



Five cities are interconnected with roads, with round-trip distances being the
same. Find the shortest path from each city to the 5-th city.
Define the optimal path from each point to the destination: 𝑓 (𝑣𝑖 ) , 1 ≤ 𝑖 ≤ 5.
If the optimal path exists, should satisfy:
𝑓 (𝑣𝑖 ) = min1≤ 𝑗≤5 {𝑐𝑖 𝑗 + 𝑓 (𝑣 𝑗 ) }, ∀1 ≤ 𝑖 ≤ 5,
where 𝑐𝑖 𝑗 represents the direct distance between 𝑣𝑖 and 𝑣 𝑗 (𝑐𝑖𝑖 = 0).
Functional Space Iteration Method (Value Iteration):
First, take 𝑓1 (𝑣𝑖 ) = 𝑐𝑖5 , 1 ≤ 𝑖 ≤ 5.
Then substitute according to the following formula:
𝑓𝑘+1 (𝑣𝑖 ) = min1≤ 𝑗≤5 {𝑐𝑖 𝑗 + 𝑓𝑘 (𝑣 𝑗 ) }, ∀𝑘 ≥ 1
If for some 𝑘, 𝑓𝑘+1 (𝑣𝑖 ) = 𝑓𝑘 (𝑣𝑖 ) , ∀1 ≤ 𝑖 ≤ 5, then
𝑓𝑘 (𝑣𝑖 ) = min1≤ 𝑗≤5 {𝑐𝑖 𝑗 + 𝑓𝑘 (𝑣 𝑗 ) }, ∀1 ≤ 𝑖 ≤ 5
Thus, we get 𝑓 (𝑣𝑖 ) = 𝑓𝑘 (𝑣𝑖 ) , ∀1 ≤ 𝑖 ≤ 5.

8.5.6 Chain matrix multiplication in𝑂 (𝑛3 ) (12Q3)
The DAG looks like pyramid, |𝑉 | = 𝑂 (𝑛2 ) , |𝐸 | = 𝑂 (𝑛3 ) .
Define subproblem𝐶 (𝑖, 𝑗 ) = min cost multiplying 𝐴𝑖 × 𝐴𝑖+1 × . . . × 𝐴 𝑗 .
The first branch in subtree will split the product in two pieces: 𝐴𝑖 × . . .× 𝐴𝑘
and 𝐴𝑘+1 × . . . × 𝐴 𝑗 , for some 𝑖 ≤ 𝑘 ≤ 𝑗 . The cost of the subtree is the
cost of these two partial products, plus the cost of combining them.

8.6 Branch-and-Bound Algorithm
(i) If one of the linear programs LP𝑖 is infeasible, i.e., 𝑃𝑖 = ∅, then we also

have 𝑆𝑖 = ∅ since 𝑆𝑖 ⊆ 𝑃𝑖 . Thus MILP𝑖 is infeasible and does not
need to be considered any further. We say that this problem is pruned by
infeasibility.

(ii) Let (𝑥𝑖 , 𝑦𝑖 ) be an optimal solution of LP𝑖 and 𝑧𝑖 its value, 𝑖 = 1, 2.
(iia) If 𝑥𝑖 is an integral vector, then (𝑥𝑖 , 𝑦𝑖 ) is an optimal solution of

MILP𝑖 and a feasible solution of MILP. Problem MILP𝑖 is solved,
and we say that it is pruned by integrality. Since 𝑆𝑖 ⊆ 𝑆, it follows
that 𝑧𝑖 ≤ 𝑧∗ , that is, 𝑧𝑖 is a lower bound on the value of MILP.

(iib) If 𝑥𝑖 is not an integral vector and 𝑧𝑖 is smaller than or equal to the
best known lower bound on the value of MILP, then 𝑆𝑖 cannot contain
a better solution and the problem is pruned by bound.

(iic) If 𝑥𝑖 is not an integral vector and 𝑧𝑖 is greater than the best known
lower bound, then 𝑆𝑖 may still contain an optimal solution to MILP.
Let 𝑥 𝑗

𝑖
be a fractional component of vector 𝑥𝑖 . Let 𝑓 ′ := 𝑥 𝑗

𝑖
,

𝑆𝑖1 := 𝑆𝑖∩{ (𝑥, 𝑦) : 𝑥 𝑗 ≤ 𝑓 ′ }, 𝑆𝑖2 := 𝑆𝑖∩{ (𝑥, 𝑦) : 𝑥 𝑗 > 𝑓 ′ }
and repeat the above process.

8.7 The Cutting Plane Method
The idea is to find an inequality 𝑎𝑥 + 𝑏𝑦 ≤ 𝛽 that is satisfied by every point
in 𝑆 and such that 𝑎𝑥0 + 𝑏𝑦0 > 𝛽. The existence of such an inequality is
guaranteed when (𝑥0 , 𝑦0 ) is a basic solution of (1.6).
An inequality 𝑎𝑣 ≤ 𝛽 is valid for a set 𝐾 ⊆ R𝑑 if it is satisfied by every
point 𝑣 ∈ 𝐾 . A valid inequality 𝑎𝑥 + 𝑏𝑦 ≤ 𝛽 for 𝑆 that is violated by
(𝑥0 , 𝑦0 ) is a cutting plane separating (𝑥0 , 𝑦0 ) from 𝑆. Let 𝑎𝑥 + 𝑏𝑦 ≤ 𝛽
be a cutting plane and define 𝑃1 := 𝑃0 ∩ { (𝑥, 𝑦) : 𝑎𝑥 + 𝑏𝑦 ≤ 𝛽}.
Since 𝑆 ⊆ 𝑃1 ⊆ 𝑃0 , the linear programming relaxation of MILP based on
𝑃1 is stronger than the natural linear programming relaxation (1.5), in the sense
that the optimal value of the linear program max{𝑐𝑥 + ℎ𝑦 : (𝑥, 𝑦) ∈ 𝑃1 }
is at least as good an upper-bound on the value 𝑧∗ as 𝑧0 , while the optimal
solution (𝑥0 , 𝑦0 ) of the natural linear programming relaxation does not be-
long to 𝑃1 . The recursive application of this idea leads to the cutting plane
approach.

9 Numerical Methods
9.1 Descent methods
• 𝑥 (𝑘+1) = 𝑥 (𝑘) + 𝑡 (𝑘)Δ𝑥 (𝑘)
• the search direction in a descent method must satisfy

∇ 𝑓 (𝑥 (𝑘) )𝑇Δ𝑥 (𝑘) < 0
• Exact line search: 𝑡 = arg min𝑠≥0 𝑓 (𝑥 + 𝑠Δ𝑥 )
• Backtracking line search: Begin from 𝑡 = 1 and reduce 𝑡 by a factor
𝛽 ∈ (0, 1) until 𝑓 (𝑥 + 𝑡Δ𝑥 ) ≤ 𝑓 (𝑥 ) + 𝛼𝑡∇ 𝑓 (𝑥 )⊤Δ𝑥 for some
𝛼 ∈ (0, 0.5) .

9.2 Steepest Descent
• For any norm ∥ · ∥ on R𝑛 , define a normalized steepest descent direction

as
Δ𝑥𝑛𝑠𝑑 = arg min{∇ 𝑓 (𝑥 )⊤𝑣 | ∥𝑣 ∥ ≤ 1}

• Define unnormalized steepest descent As
Δ𝑥𝑠𝑑 = ∥∇ 𝑓 (𝑥 ) ∥∗Δ𝑥𝑛𝑠𝑑

9.3 Newton’s Method
Newton’s Method: 𝑥𝑘+1 = 𝑥𝑘 − ∇2 𝑓 (𝑥𝑘 )−1∇ 𝑓 (𝑥𝑘 ) , 𝑘 = 1, 2, . . . .
9.4 Which set is convex?
• (a) A slab {𝑥 ∈ R𝑛 | 𝛼 ≤ 𝑎𝑇 𝑥 ≤ 𝛽} is convex because it is the

intersection of two halfspaces, both of which are convex. The intersection
of convex sets is convex.

• (b) A rectangle {𝑥 ∈ R𝑛 | 𝛼𝑖 ≤ 𝑥𝑖 ≤ 𝛽𝑖 , 𝑖 = 1, . . . , 𝑛} is convex
because it is a finite intersection of halfspaces. It is also a polyhedron.

• (c) A wedge {𝑥 ∈ R𝑛 | 𝑎𝑇1 𝑥 ≤ 𝑏1 , 𝑎
𝑇
2 𝑥 ≤ 𝑏2 } is convex because

it is the intersection of two halfspaces, which are convex. (If 𝑏1 = 0 and
𝑏2 = 0, it is a cone.)

• (d) The set {𝑥 | ∥𝑥 − 𝑥0 ∥2 ≤ ∥𝑥 − 𝑦 ∥2 , ∀𝑦 ∈ 𝑆} is convex because
for each 𝑦 ∈ 𝑆, the set {𝑥 | ∥𝑥 − 𝑥0 ∥2 ≤ ∥𝑥 − 𝑦 ∥2 } is a halfspace,
and the intersection of halfspaces (over all 𝑦) is convex.

• (e) The set {𝑥 | dist(𝑥, 𝑆) ≤ dist(𝑥, 𝑇 ) } is not convex in general.
For example, with 𝑆 = {−1, 1} and 𝑇 = {0} in R, the resulting set is
{𝑥 | 𝑥 ≤ −1/2 or 𝑥 ≥ 1/2}, which is not convex.

• (f) The set {𝑥 | 𝑥 + 𝑆2 ⊆ 𝑆1 } (with 𝑆1 convex) is convex because it can
be written as

⋂
𝑦∈𝑆2 (𝑆1 − 𝑦) , an intersection of convex sets, which is

convex.
• (g) The set {𝑥 | ∥𝑥 − 𝑎∥2 ≤ 𝜃 ∥𝑥 − 𝑏∥2 } with 𝑎 ≠ 𝑏 and 0 ≤ 𝜃 ≤ 1

is convex. If 𝜃 = 1, it is a halfspace; if 𝜃 < 1, it is a ball, both of which
are convex sets.

• (a) 𝛼 ≤ E 𝑓 (𝑥 ) ≤ 𝛽 is convex because the constraint is linear in 𝑝:∑𝑛
𝑖=1 𝑝𝑖 𝑓 (𝑎𝑖 ) .

• (b) prob(𝑥 ≥ 𝛼) ≤ 𝛽 is convex because it is a linear constraint:∑
𝑖:𝑎𝑖 ≥𝛼 𝑝𝑖 ≤ 𝛽.

• (c) E |𝑥3 | ≤ 𝛼E |𝑥 | is convex because it is a linear constraint:∑𝑛
𝑖=1 𝑝𝑖 ( |𝑎𝑖 |

3 − 𝛼 |𝑎𝑖 | ) ≤ 0.
• (d) E𝑥2 ≤ 𝛼 is convex because it is a linear constraint:

∑𝑛
𝑖=1 𝑝𝑖𝑎

2
𝑖
≤ 𝛼.

• (e) E𝑥2 ≥ 𝛼 is convex because it is a linear constraint:
∑𝑛
𝑖=1 𝑝𝑖𝑎

2
𝑖
≥ 𝛼.

• (f) var(𝑥 ) ≤ 𝛼 is not convex in 𝑝 because variance var(𝑥 ) =

E𝑥2 − (E𝑥 )2 is not a convex function of 𝑝. A counterexample exists
for 𝑛 = 2.

• (g) var(𝑥 ) ≥ 𝛼 is convex because the superlevel set of the quadratic
function E𝑥2 − (E𝑥 )2 is convex (since the matrix 𝐴 = 𝑎𝑎𝑇 is positive
semidefinite).

• (h) quartile(𝑥 ) ≥ 𝛼 is convex because it is equivalent to a strict linear
inequality:

∑𝑘
𝑖=1 𝑝𝑖 < 0.25, where 𝑘 = max{𝑖 |𝑎𝑖 < 𝛼}.

• (i) quartile(𝑥 ) ≤ 𝛼 is convex because it is equivalent to a linear inequal-
ity:

∑𝑛
𝑖=𝑘+1 𝑝𝑖 ≥ 0.25, where 𝑘 is such that 𝑎𝑘 < 𝛼 ≤ 𝑎𝑘+1 (define

𝑘 = 0 if 𝛼 ≤ 𝑎1).

9.5 Which of these functions are convex?
• (a) 𝑓 (𝑥 ) = 𝑒𝑥 − 1 on R is strictly convex because its second deriva-

tive is positive everywhere. Therefore, it is also quasiconvex. It is also
quasiconcave but not concave.

• (b) 𝑓 (𝑥1 , 𝑥2 ) = 𝑥1𝑥2 on R2
++ is neither convex nor concave because

its Hessian is neither positive nor negative semidefinite. It is quasiconcave
since its superlevel sets { (𝑥1 , 𝑥2 ) | 𝑥1𝑥2 ≥ 𝛼} are convex. It is not
quasiconvex.

• (c) 𝑓 (𝑥1 , 𝑥2 ) = 1/(𝑥1𝑥2 ) on R2
++ is convex because its Hessian is

positive semidefinite. Therefore, it is also quasiconvex. It is not concave
or quasiconcave.

• (d) 𝑓 (𝑥1 , 𝑥2 ) = 𝑥1/𝑥2 on R2
++ is neither convex nor concave because

its Hessian is indefinite. It is quasiconvex and quasiconcave (quasilinear),
since both sublevel and superlevel sets are halfspaces.

• (e) 𝑓 (𝑥1 , 𝑥2 ) = 𝑥2
1/𝑥2 on R × R++ is convex because its Hessian is

positive semidefinite. Therefore, it is also quasiconvex. It is not concave
or quasiconcave.

• (f) 𝑓 (𝑥1 , 𝑥2 ) = 𝑥𝛼1 𝑥
1−𝛼
2 , 0 ≤ 𝛼 ≤ 1, on R2

++ is concave and qua-
siconcave because its Hessian is negative semidefinite. It is not convex or
quasiconvex.

• (g) 𝑓 (𝑥 ) =
(∑𝑛
𝑖=1 𝑥

𝑝

𝑖

)1/𝑝
with dom 𝑓 = R𝑛++ and 𝑝 < 1, 𝑝 ≠ 0 is

concave. This includes, for example, the harmonic mean and the 𝑝-norm
with 𝑝 < 1.

• 3.18 (a) 𝑓 (𝑋) = tr𝑋−1 is convex on dom 𝑓 = 𝑆𝑛++ because for any
𝑍 ≻ 0 and 𝑉 ∈ 𝑆𝑛 , 𝑔 (𝑡 ) = tr(𝑍 + 𝑡𝑉 )−1 is a positive weighted sum
of convex functions 1/(1 + 𝑡𝜆𝑖 ) .

• 3.18 (b) 𝑓 (𝑋) = (det𝑋)1/𝑛 is concave on dom 𝑓 = 𝑆𝑛++ because
𝑔 (𝑡 ) = (det(𝑍 + 𝑡𝑉 ) )1/𝑛 is a geometric mean of affine functions, which
is concave.

• 3.19 (a) 𝑓 (𝑥 ) = ∑𝑟
𝑖=1 𝛼𝑖 𝑥[𝑖 ] is convex if 𝛼1 ≥ · · · ≥ 𝛼𝑟 ≥ 0, since it

is a nonnegative sum of convex functions 𝑥[1] , 𝑥[1] + 𝑥[2] , . . . , 𝑥[1] +
· · · + 𝑥[𝑟 ] .

• 3.19 (b) 𝑓 (𝑥 ) = −
∫ 2𝜋
0 log𝑇 (𝑥, 𝜔)𝑑𝜔, where 𝑇 (𝑥, 𝜔) = 𝑥1 +

𝑥2 cos 𝜔 + · · · + 𝑥𝑛 cos( (𝑛 − 1)𝜔) , is convex on {𝑥 | 𝑇 (𝑥, 𝜔) >
0, 0 ≤ 𝜔 ≤ 2𝜋} because 𝑔 (𝑥, 𝜔) = − log(𝑇 (𝑥, 𝜔) ) is convex in 𝑥
for fixed 𝜔, and the integral preserves convexity.

• 3.20 (a) 𝑓 (𝑥 ) = ∥𝐴𝑥 − 𝑏∥ is convex because it is the composition of a
convex norm and an affine function.

• 3.20 (b) 𝑓 (𝑥 ) = −(det(𝐴0 + 𝑥1𝐴1 + · · · + 𝑥𝑛𝐴𝑛 ) )1/𝑚 is convex on
{𝑥 | 𝐴0 + 𝑥1𝐴1 + · · · + 𝑥𝑛𝐴𝑛 ≻ 0} because ℎ (𝑋) = −(det𝑋)1/𝑚
is convex and the argument is affine in 𝑥.

• 3.20 (c) 𝑓 (𝑥 ) = tr(𝐴0 + 𝑥1𝐴1 + · · · + 𝑥𝑛𝐴𝑛 )−1 is convex on
{𝑥 | 𝐴0 + 𝑥1𝐴1 + · · · + 𝑥𝑛𝐴𝑛 ≻ 0} because tr𝑋−1 is convex and the
argument is affine.

• 3.21 (a) 𝑓 (𝑥 ) = max𝑖=1,...,𝑘 ∥𝐴(𝑖) 𝑥 − 𝑏 (𝑖) ∥ is convex because it is
the pointwise maximum of convex functions.

• 3.21 (b) 𝑓 (𝑥 ) =
∑𝑟
𝑖=1 |𝑥 | [𝑖 ] is convex because it can be written as the

pointwise maximum of convex functions (sums of the 𝑟 largest absolute
values).

• 3.22 (a) 𝑓 (𝑥 ) = − log(− log(∑𝑚
𝑖=1 𝑒

𝑎𝑇
𝑖
𝑥+𝑏𝑖 ) ) is convex on {𝑥 |∑𝑚

𝑖=1 𝑒
𝑎𝑇
𝑖
𝑥+𝑏𝑖 < 1} because it is the composition of a convex function

and affine mappings, and preserves convexity.
• 3.22 (b) 𝑓 (𝑥, 𝑢, 𝑣) = −

√
𝑢𝑣 − 𝑥𝑇 𝑥 on { (𝑥, 𝑢, 𝑣) | 𝑢𝑣 >

𝑥𝑇 𝑥, 𝑢, 𝑣 > 0} is convex because −√𝑥1𝑥2 is convex on R2
++ and

decreasing in each argument, and 𝑢𝑣 − 𝑥𝑇 𝑥 is concave.
• 3.22 (c) 𝑓 (𝑥, 𝑢, 𝑣) = − log(𝑢𝑣 − 𝑥𝑇 𝑥 ) on { (𝑥, 𝑢, 𝑣) | 𝑢𝑣 >

𝑥𝑇 𝑥, 𝑢, 𝑣 > 0} is convex because − log is convex and decreasing, and
𝑢𝑣 − 𝑥𝑇 𝑥 is concave.

• 3.22 (d) 𝑓 (𝑥, 𝑡 ) = −(𝑡 𝑝 − ∥𝑥 ∥ 𝑝𝑝 )1/𝑝 for 𝑝 > 1 and { (𝑥, 𝑡 ) | 𝑡 ≥
∥𝑥 ∥𝑝 } is convex because it is the composition of a convex and decreasing
function and concave functions.

• 3.22 (e) 𝑓 (𝑥, 𝑡 ) = − log(𝑡 𝑝 − ∥𝑥 ∥ 𝑝𝑝 ) for 𝑝 > 1 and { (𝑥, 𝑡 ) | 𝑡 >
∥𝑥 ∥𝑝 } is convex because it is the composition of a convex and decreasing
function and a concave function.
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