1 Basic Math

1.1 Norm

1/p
1 Lo lxllp = (S 13i1P) 7 oo = maxi <y 131
2. dual norm for [|-|| is [|x[l. = max)y|<; yTx.

3. The dual norm for £, is £ where 1/p +1/g = 1.
1.2 Inequalities

1. Cauchy-Schwarz Inequality: [(u, v)| < [|ul| |Iv]l
b 2 b b
(f21rg@ldx)” < (2 1@ ax) (f2 1801 dx)
. b
2. Holder Inequality: /a [f(x)g(x)dx < |Ifllp - ligllg for 1/p+
1/g =1.
s i E[X]
3. Markov’s Inequality: P(X > a) < =2 fora > 0.

<
4. Chernoff Inequality: P(X > a) < in%M(t)e_m fora > 0.
>

1.3 Matrix
1. Orthogonal matrices: A square matrix Q is orthogonal if QT Q =

QQ
det Q = +1
Its eigenvalues are placed on the unit circle. (so if real, A = +1)
Its eigenvectors are unitary, i.e. have length one.
Its columns as well as rows form an unit orthonormal set. (Thus, the
elements of Q are no larger than 1 in absolute value.)
* Norm and inner-product preservation
2. Symmetric matrices: A square matrix A is symmetric if A = AT .

« The eigenvalues of a real symmetric matrix are all real, and their

associated eigenvectors are orthogonal to each other.

* 0i(A) =V (A) =4 (A)]. [|All2 = max |4; (A)]

3. Schur complement: Let A =

X Y by X 1 tri
yT  z|beann Xn real symmetric
matrix.
« Suppose Z is invertible and define S = X — YZ-lyT. 1t Z e 0,
then A = 0iff X = Oand S4 = 0.
« Suppose X is invertible and define S/’4
then A = 0iff Z = Oand S’y = 0.
4. Positive Semidefinite Matrix: A = 0iff Yx € R,
all eigenvalues are non-negative iff there exists a unique n X n positive
semidefinite matrix A!/2 such that A = Al/241/2 iff 3B € RA*n
(k = rank(A))suchthat A= BT B
5. Courant-Fischer theorem The k-th largest eigenvalue of a symmetric
matrix A is given by

=Z-Y'Xx ly. X e>0,

. xT Ax
A = min max T
wl o wk=Tern xiwl!  wk-1 x'x
. xT Ax
= max min T
wl o wn—kern xiwl  wn-k x'x

1.3.1 Matrix Decomposition

1. SVD:For A € R"™*" there A= UAVT =
Al 2Ny > > Ay =0
o ol(A) = A (AT A)

o U € R"™ M gigenvectors of AAT
o Ve R™" gjgenvectors of AT A

2. Decomposition of Symmetric Matrices Suppose Q is symmetric, then
Q =UAUT, where U is orthogonal and A is diagonal. The eigenvalues
of Q are the diagonal elements of A. The eigenvectors of Q are the
columns of U.

3. QR decomposition: For a real square matrix A, there exits an orthogonal
Q and an upper triangular R such that A = QR. If A is nonsingular, then
this factorization is unique.

4. Cholesky-decomposition Assume A is a symmetric positive square ma-
trix, then A = UTU = UUT where U is a unique upper triangular
matrix and L is a lower triangular matrix.

1.3.2 Matrix Norms
\ &= 1 |a17‘2 VU(ATA) =

[All2 = max) =1 |Ax]l2 = o7y (A).

Zr (Tiui(t’i)T, where

=Ag=0,g= mm{m,n}.

1. Frobenius norm: |[A||p =

rol
i=1"1

2. Spectral norm:

3. 1enorm: [|Ally = max<j<pn BT laij| = max ), =1 |AX oo

4. Operator norm:

5. Infinity
max||xe=1 1AX]I1.

6. Nuclear norm: [|A|l, = Z{:] oi(A) = :’:1 o (AT).

7. Induced norm: ||Allp—q = max||c,=1 [[Ax]lg-

[Allp = maxx,=1 1AX]lp-

norm: lAllo = maxi<i<m X7, laijl =

1.3.3 Derivatives of Matrices, Vectors
Lo uwax=aT, dwax=xT
2 d d T

3

d X a= dxa XxX=a
xTAx=(A+AT)x

Aa™XTh=L(baT +abT) when X € S"

dx,aTXb—abT —aTXTb ba’

6 %bTXTXc:X(bc +cbT)

7. S w[F(X)]=f(X)T where f = F’

8. b logdetx = (x~H)T

9. L detX=detX (X7

wok

10. d(A™h)y=-A"lgaa™!

1. g Seig(X)= Lux=1

12. £ [eig(X) = $& det(X) = det (X)X T
13. Norm Derivatives:

A I
ox llx —alz= Tx—al

i( x-a ): 1 _ (Xfa)(xfa)T
Ix \ix-all Ix-ally ”x_a”%

© Zlxl3 = & (xTx) =2x
+ Frobenius norm: & [1X|1% = B Tr(xxH) =2x

1.4 Reasoning about Unboundedness for Quadratic Forms
(Duality)

« infy xTQx is unbounded below &= Q is not positive semidefinite
Q%0

* supy xT Qx is unbounded above <= Q is not negative semidefinite

xTAx > 0iff

(Q£0)

o infy %xTQx + T x is unbounded below & Q % Oor Q = 0and
c ¢ range(Q)

* Supy;— 7xTQx + ¢ x is unbounded above — Q£0o0rQ =0
and ¢ ¢ range(Q)

e If O > O (positive definite), then inf x %xTQx +cT

X is finite and

achieved at x* = —Q71C

If Q = 0 (positive semidefinite) and ¢ € range(Q), infx %xl Ox +

T x is finite and achieved at x* solving Qx* + ¢ = 0

 If Q is indefinite (has both positive and negative eigenvalues), XTQX is
unboundcd both above and below

« infy50xT'Qx is unbounded below if 3d >

dTQd <0
¢ ForQ > 0,sup, —

0,d # 0 such that

=07
—Q_lc

x Qx +cT xis finite and achieved at x*

¢ ForQ < 0,supy ijQx+c Xx is finite and achieved at x*

1.5 Miscellaneous
1. Optimization facts:
value as 00(—00)

2. Decomposition of any vector:
* Orthogonal decomposition of any vector ¢ w.r.t Ax = b: ¢ =
ATA+cg, ATcy=0
« Parallel-orthogonal decomposition of any vector ¢ w.r.t vector a:
c=Ada+cy,a’cp=0
o x=xt+x7,xt =max(0, x;), x~

if min. (max) problem infeasible, define optimal

= max (0, —x;)

3. Invertible Matrix:
¢« AATl=ATA= I, (unique inverse exists)
+ det(A) # 0 (nonzero determinant)
¢ Columns and rows are linearly independent
¢ Full rank: rank(A) = n
¢ The only solution to Ax =0isx =0
« For any b, the equation AX = b has a unique solution
o I+yyl —ssT/sTs s invertible if and only if y Ts # 0
o det(I+yyT)=1+yTy
o det(A-uvT) =det(A)(1-vTA u)
c U+yy") =1 -y )/ (1+yTy)
o eig(A-Al)=eig(A) -2
o lez = deiag(v)x
4. Symmetnc Matrix:

A=AT
All eigenvalues of A are real
Eigenvectors corresponding to distinct eigenvalues are orthogonal
Spectral Theorem: A can be diagonalized by an orthogonal matrix:
A=QAQT, where Q is orthogonal (Q T Q = I), and A is diagonal
with real entries (the eigenvalues of A)
A has an orthonormal basis of eigenvectors
The singular values of A are |1; (A)| (the absolute values of its eigen-
values)
o xx'is always psd
5. Determinant Properties:
e det(S) > 0ifSispd
o det(A) = []; A;, where A; =eig(A)
o det(cA) = cdet(A), A e RN
o det(AT) = det(A)
e det(AB) = det(A) det(B)
. L P
det(A™") A
o det(A™) = [det(A)]"
o det(+uwTy=1+uTv
o Forn=2:det(I+A)=1+det(A) +Tr(A)
+ Forn = 3: det(I+A) = 1+det(A)+Tr(A)+ 1 [Tr(A)2-Tr(A?)]
Range and Null Space:
* Range: R(A) = {Ax:x € R"}
* Null space: N(A) = {x: Ax =0}
« Orthogonality: R(A)L = N(AT), N(A) = (R(AT))*
7. Symmetric Matrix:
o If A is symmetric, then 07 (A) = |2; (A)|, where 2; (A) is the i-th
largest eigenvalue.
o xx'is always psd
8. Vector Taylor Expansion: f(y) ~ f(x) + Vf(x)T(y - x) + %(y -
X)TV2F)(y - %)
9. Integral Form of Taylor’s Theorem:
FOY=F)+ [ Vf(x+1(y =) T (v - x) di
Matrix Rank:
+ rank(A) =rank(AT) =rank(AAT) =rank(AT A)
Matrix Inequality:
« PrQ e I+ P 120p~12
Taylor Series Expansions:
o x"
s e =X T .
o log(l+x) =% (-1)"~12-
Logarithm Bounds:
X
o —— <log(l+x)<x

forall x > —1

Fundamental Theorem of Calculus:
e If f is continuous on [a,b] and F(x)

F'(x) = f(x).
o If F is an antiderivative of f on [a, b], then _/ab f(x)dx =
F(b) - F(a).
Basic Integrals:
/x"dx =X
. f 1dx:ln|)c|+C
. feaxdx* - ax+c
. f sin(ax)dx = _E cos(ax) +C
. fco%(ax)a'x = l sin(ax) + C
f 2 dx = drctan(x) +C
1+
f \/lfx2
Integral Properties:
b
[P laf(x) +bg(x)]dx =
b/ub g(x)dx
Additivity: /ab f(x)dx+fbc f(x)dx :fac f(x)dx
Reversal of limits: /;lb f(x)dx = _/l'?a f(x)dx
« 16 f(x) 2 0on [a,b] then [7 f(x)dx 20

= [X f(t)dt, then

-1

dx = arcsin(x) + C

afab f(x)dx +

* Linearity:

«  Absolute value: |f f(x)dx| < /ab | f(x)|dx

17. Mean Value Theorem (MVT)
« Differentiation: If f is continuous on [a, b] and differentiable on
(a, b), then there exists ¢ € (a, b) such that:
.’ f(b) - f(a)
c)=——"—
=2
* Rolle’s Theorem: If f(a) = f(b), then there exists ¢ € (a,b)
such that f”(c) =0
* Mean Value Theorem for Integrals: If f is continuous on [a, b],
then there exists ¢ € [a, b] such that:
b
[ rmax=r@@-a
a
18. Limit Definition of Derivative:
¢ For f : R — R, the derivative at x is
. fx+h) - f(x)
’(x) = lim flexh) = f(x)
f1) h—0 h
e For f : R™ — R, the partial derivative with respect to x; at x is
f m L the) - f(x)
O e
19. Limit Definition of Hessnan (Second Derivatives):
e For f : R — R, the second partial derivative is
*f 1(af f
%x:limf—x+he~— X
ax,-axj( ) h—0 h Bx,-( 2 ( )
¢ Alternatively,
8f . f(x+he;+hej) - f(x+he;) - f(x+hej)
——— (x) = lim
Ox; 5)(_,’ h—0 h2
where ¢; and e are standard basis vectors.
20. Limits:
. len>1a f(x): The value f(x) approaches as x approaches a
. lim 22 o
x—=0 X
. l-cosx 1
e lim ==
x—0 x2
X
-1
. lim £ =1
x—0 X
n
o dim (142)" =
n—oco n
< dlim(1+x)!/* =¢
x—0
¢ lim x%Ilnx=0fora>0
X
21. Lipschitz Condition:

* A function f : D — R is Lipschitz continuous on D if there exists
L > O such that forall x,y € D:

Lf(x) = FODI < Lilx = yll

¢ L is called the Lipschitz constant.

2 Convex Sets

Definition 1 Let S € R’ be a set. We say that
1. Sis affine if @x + (1 — @)y € S whenever x, y € Sand @ € R;

2. Sisconvexif @ax+ (1 — @)y € S whenever x,y € Sand @ € [0, 1].
Given x,y € R™ and @ € R, the vector z = ax + (1 — @)y is called
an affine combination of x and y. If @ € [0, 1], then z is called a convex
combination of x and y.

Geometrically, when x and y are distinct points in R”, the set L = {z € R :
z=ax+(l-a)y, @ € R} of all affine combinations of x and y is the line
determined by x and y, and theset S = {z € R : z = ax+(l- @)y, @ €
[0, 1]} is the line segment between x and y. By convention, the empty set )
is affine and hence also convex.

linear = affine = convex.

1. An affine combination of the points xq, ...,

xi € R is a point of the

form z = lele a@; xj, where Z{le a; =1.
2. A convex combination of the points X1, ..., Xz € R is a point of the
form z = le‘(:I «; x;, where Zf'(:l @ =land @p,...,ap >0.

Proposition 1 Let S C R’ be non-empty. The following are equivalent:
(a) S is affine.
(b) Any affine combination of points in S belongs to S.
(c) S is the translation of some linear subspace V C R"*; i.e., S is of the form
{x}+V={x+veR":v eV} forsomex € R".
Note: Though V is unique, x is not. V is parallel of S pass 0. For n
dimensional S, there are (1 + 1) types of subspaces: origin, line, plane, ...
{x: Ax = b} isaffine. {x : Ax < b} is convex but not affine.
Proposition 2 Let S C R" be arbitrary. Then, the following are equivalent:
(a) S is convex.
(b) Any convex combination of points in S belongs to S.
Definition A set K C R™ is called a cone if {ax : @ > 0} C K whenever
x € K. If K is also convex, then K is called a convex cone.
A cone need not be convex. Eg: two lines.
Definition 2 Let S C R” be arbitrary.
1. The affine hull of S, aff(S), is the intersection of all affine subspaces
containing S. aff(S) is the smallest affine subspace that contains S.
2. The convex hull of S, conv(S), is the intersection of all convex sets
containing S. conv(S) is the smallest convex set that contains S.
Proposition 3 Let S C R’ be arbitrary. Then, the following hold:
(a) aff(S) is the set of all affine combinations of points in S.
(b) conv(S) is the set of all convex combinations of points in S.
Definition 3 Let S C R’ be arbitrary. The dimension of S, denoted by
dim(S), is the dimension of the affine hull of S.
Given a non-empty set S € R, we always have 0 < dim(S) < n.
Example 2 (Dimension of a Set) Consider the two-point set S =
{(1,1), (3,2)} € R2. By Proposition 3(a), we have aff(S) = {a(1,1) +
(1 - a)(3,2) : @ € R} C RZ. Itis easy to verify that aff(S) =
{(0,1/2)} + V, where V = {t(1,1/2) : t € R} is the linear subspace
generated by the vector (1, 1/2). Hence, we have dim(S) = dim(V) = 1.

2.1 Convexity-Preserving Operations
2.1.1 Set Operations
Intersection of two convex sets is always convex.

2.1.2 Affine Functions

We say that a map A : R" — R is affine if A(ax] + (1 — @)xy) =
aA(xy) + (1 — @)A(xp) for all x;,x; € R™ and @ € R. It can be
shown that A is affine iff there exist Ag € R™*" and yy € R™ such that
A(x) = Apx +yg forall x € R™.

Proposition 4 Let A : R — R be an affine mapping and S € R”
be a convex set. Then, the image A(S) = {A(x) € R™ : x € S}is
convex. Conversely, if 7 C R is a convex set, then the inverse image
A~N(T) = {x € R" : A(x) € T} is convex.




(a) Rotation: R 3 x > A(x) =Ux € R

U e R™*" orthogonal matrix (i.e., UTU =UU T =1)
cos 6 sin H]

—sinf  cos @

(b) Projection: R 5 x > A(x) = Px € R"

P € R™*" projection matrix (i.e., P2=P)

orthogonal projection (i.e., Pl=pP P= PT)

wref) e |ofroift -

0 1

2.1.3 Perspective Functions

Define the perspective function P : R"™ X Ryy — R™ by P(x,t) = x/t.
Proposition 5 Let P : R X Ryt — R be the perspective function and
S € R™ X Ry4 be a convex set. Then, the image P(S) = {x/t € R" :
(x,t) € S} is convex. Conversely, if 7 C R is a convex set, then the
inverse image P~V (T) = {(x,1) € R"™ x Ry : x/t € T} is convex.
Proof For any x| = (X,#]) € R X R4y, xp = (X2,11) € R X Ry,
ax|+(l1-a)Xy

Forn=2:U =

(?L’T.

=

and @ € [0, 1], we have P(ax; + (1 — a@)xp) = an T (—a)n =
BP(x1) + (1 -B)P(x2),
where 8 = an € [0,1].

at +(1-a)t
Moreover, as a increases from 0 to 1, 8 increases from 0 to 1. It follows that
P([x1,x2]) = [P(x1), P(x2)] € R™. This completes the proof. (]
Corollary 1Let A : R” — R™*! be the affine map given by

A(x)—[-r]x+ d , where Q € R ¢ e R™ u e R™, d e R.

Let D = {x € R" : ¢"x+d > 0}. Define the linear-fractional map
f:D —> R™by f =PoA where P : R" X Ryy — R™ is the
perspective function. If S C D is convex, then the image f(S) is convex.
Conversely, if T C R is convex, then the inverse image £~ 1 (T') is convex.

2.2 Topological Properties

1. Interior: int(S) = {x € S: B(x, €) C S forsome € > 0}.

2. Sisopenif S =int(S). Eg. 0, R" are open.

3. Sis closed if R” \ S is open. Eg. 0, R" are closed.

4. Aset S C R™ is compact if it is closed and bounded.

Facts: 1. The intersection of any family of closed sets is closed.

2. Let f : R — R be continuous and ¢ € R be a constant.
S={x eR": f(x) < c}isclosed.

Eg. H (s,¢) ={x eR" :sTx < c};S={x eR": Ax < b}
3. S is closed iff V convergent sequence {x; } in S (x5, € S, x5, — x), the
limitisin S (x € S).

Definition 4 Let S C R’ be arbitrary. We say that x € S belongs to the
relative interior of S, denoted by x € rel int(S), if there exists an € > 0
such that B(x, €) N aff(S) C S. The relative boundary of S, denoted by
rel bd(S), is defined by rel bd(S) = cl(S) \ rel int(S).

Theorem 1 Let S € R" non-empty and convex, rel int(.S) is non-empty.
Proposition 6 S C R be non-empty and convex. Vx € cl(S) and x” €
rel int(S), (x, x"] = {ax+(1-a)x’ € R" : @ € [0, 1]} C relint(S).
Weierstrass Theorem If S C R” is anon-empty compactsetand f : S — R
is a continuous function, then f attains its maximum and minimum on S.

Then

2.3 Projection onto Closed Convex Sets

Theorem 2 Let S C R’ be non-empty, closed, and convex. Then, for every
x € R™, there exists a unique point z* € S that is closest to x.

Proof (Existence)

We May assume that x¢S
Consiter any X' €S and Aefine

et (o2
2€s ’

©  Qgwin fgea s
2es 2

(Ol
® By Waesvas' theorem,

\\’x»z\\l
(s closed (verfy) gaa bowrded (T BOx, - x1yY)

By @, 2 = Ten

||x = z*||> and suppose that zj,z> € S are such

=T exisns
(Uniqueness) Let u* =
that u* = ||x — zyll2 = llx — z2|l2. Consider the point Z = %(z] +22).
By Pythagoras’ theorem, we have ||Z — x\l% = (u")? - }1 llz1 = Z’_?H%. In
particular, if z; # zp, then ||Z — xH% < (u*)?2, which s a contradiction. [J
Point z* is the projection of x on S: Ilg (x) = argmin g [|x — z\l%.
Theorem 3 Let S C R non-empty, closed, convex. Given any x € R, we
have z* = TIg (x) iff z* € Sand (z — z*) T (x — z*) < Oforallz € S.
Proof Let z* = IIg(x) and z € S. Consider points of the form z(a) =
az+ (1 — @)z", where @ € [0, 1]. By convexity, we have z(@) € S.
Moreover, we have ||z* — x|l < |lz(a@) — x|l forall @ € [0,1]. On
z(a@) - xH% = lz* + a(z - z*) - XH% =

the other hand, note that |
llz* - xH% +2a(z - 2T (2" = x) + @?||z — z"||3. Thus, we see that
lz(@) = x[3 2 l|lz* - x||3 forall @ € [0, 1]iff (z - 2*) T (z" - x) 2 0.
Conversely, suppose that for some z” € S, we have (z —z’) T (x —2’) <0
forallz € S. Uponsetting z = I1g (x), we have (ITg (x) 71’)7()(72/) <
0. (1) On the other hand, by our argument above, the point ITg (x) satisfies
(z/ =Tg(x))T (x—TIg(x)) < 0. (2) Upon adding (1) and (2), we obtain
(Mg (x) —2z") T (Mg (x) —2’) = ||Mg (x) - z'H% < 0, which is possible
only when z’ = Tlg (x). O
2.4 Separation Theorems
Theorem 4 (Point-Set Separation) Let S C R’ be non-empty, closed, and
convex and x ¢ S. Then, 3y € R" s.t. max eg yTz<y'x.

R, By fhe frojection theorom

= T Raiks andk (5 Umigue. Comsder y= %=

Nete that w#0 stwce XS, Moreover,
x
Naes (-2 (x-) so \& Tngo
9
s
B I ey S = gx-ugd F ),,/‘“ “e
-5
= ax

= ‘;* T gx-lyw <\3‘x

Theorem 5 A closed convex set S € R is the intersection of all the halfspaces
containing S, i.e.. S = g is halfspace; H2S H.

Proof We may assume that ) € S C R, for otherwise the theorem is trivial.
Let x € R™ \ S be arbitrary. Then, by Theorem 4, there exist y € R and
¢ =max;es y' z € R such that the halfspace H™ (y,¢) = {z € R"
yTz < ¢} contains S but not x. It follows that the intersection of all the
halfspaces containing S is precisely S itself. [J

Theorem 6 (Set-Set Separation) Let Sy, S» € R" be non-empty, closed, and
convex with S| N S, = 0 and S bounded. Then, there exists ay € R" such
that maxzes, yTz< minues2 yTu.

Proof First, note that the set S| = S) = {z—u €R:z € Sj,u e Sy}is
non-empty and convex. Moreover, we claim that it is closed. To see this, let
X|,X2,...beasequence in S| — Sy such that x; — x. We need to show

that x € S| — S». Since x; € S| — Sy, there exist 7 € Sy and ug € Sy
such that xg = zg —uy fork = 1,2, .. .. Since S is compact, there exists a
subsequence {uki } such that Ug; = u€ S». Since Xp; = X, we conclude
that Zp; = Xt u. Since S is closed, we conclude that x + u € Sy. It then
follows that x = (x +u) — u € S1 — Sy, as desired.

We are now in a position to apply Theorem 4 to the non-empty closed con-
vex set S| — S7. Indeed, since S| NSy = 0, we see that 0 ¢ S} — S».
By Theorem 4, there exist y € R, z* € S;, and u* € S, such that
Yyt —u*) = MaXyes, -5, yTv < 0. Since Sy is compact, we have
yTu* = ming e, v T . This implies that y T

¥ = maxzes; ¥ z. Hence,

we obtain maxzes; yTz < minues2 yTu, as desired. [J

3 Convex Functions

3.1 Basic Definitions and Properties

Definition 5 Let f : R — R U {+o0} be an extended real-valued function

that is not identically +oco.

1. Wesay fisconvexif f(ax;+(1-a)xy) < af(x))+(l-a)f(xp)
forall x|, xp € R and a € [0, 1]; f is concave if — f is convex.

2. The epigraph of f is the setepi(f) = {(x,7) € R xR: f(x) < t}.
The effective domain of f is set dom(f) = {x € R™ : f(x) < +co}.

0 ifxesS

+oo  otherwise
We have infycg f(x) & infcgn{f(x)+Is(x)}

Proposition 7 Let f : R — R U {+co}. Then, f is convex (as a function)

iff epi(f) is convex (as a set).

Note: Also, set S is convex iff Ig (x) is convex.

Corollary 2 (Jensen’s Inequality) Let f : R” — R U {+0o} be as in Def-

inition 5. Then, f is convex iff f( el u/,-xl-) < Zf:l a; f(x;) for any

X1,.-.. Xk €R™Mand @, ..., g € [0,1] suchlhalZl.(: a; =1.

Note: The epigraph epi( ) of f is closely related to, but not the same as, the
t-level set Ly (f) of f, where Ly (f) = {x € R : f(x) <t}andt € R
is arbitrary. Even if Ly (f) is convex for all # € R, the function f may not be

convex. E.g., the function x — x3A A function whose domain is convex and
whose -level sets are convex for all # € R is called a quasi-convex function.

4. The indicator of S is the function Ig (x) = {

3.2 Conjugate Function

Theorem 7 Let f : R” — R U {+c0} be a convex function such that epi( f)
is closed. Then, f can be represented as the pointwise supremum of all affine
functions h : R" — R satisfying h < f.

Given a convex function f : R — R U {+co}, consider the set Sy =
{(y,c) e R"xR:yTx—c < f(x)V¥x € R™}, which consists of the co-
efficients of those affine functions & : R — Rsatisfying h < f. Clearly, we
have yTx — ¢ < f(x) forall x € R iff supcpn {y x - f(x)} < c.
This shows that S is the epigraph of the function f* : R" — R U {+co}

givenby f*(y) = supyepn {y ' x — f(x)}. Moreover, observe that Sy is
closed and convex, implies f* is convex. f* is called the conjugate of f.

3.3 Convexity-Preserving Transformations
Theorem 8 The following hold:

(a) (Non-Negative Combinations) Let f1, ...,
isfying ﬂl'.':‘l dom(f;) # 0. Then, for any ai,...,
f(x) =X, @i fi(x) is convex.

(Pointwise Supremum) Let I be an index set and {f;};cy, where
fi : R"™ - RU {+oco} forall i € I, be a family of convex functions.
Define the pointwise supremum f : R™ — R U {+o0} of {fj}ier by
f(x) =sup;ey fi(x). Suppose that dom( f) # (. Then f is convex.
(Affine Composition) Let g : R — RU {+co} be a convex function and
A : R™ — R" be an affine mapping. Supposerange(A)Ndom(g) # 0.
Then f : R — R U {+o0} defined by f(x) = g(A(x)) is convex.
(Composition with an Increasing Convex Function) Let g : R —
RU {+c0} and h : R — R U {+0c0} be convex functions that are
not identically +co. Suppose that / is increasing on dom(h). Define
f(x) = h(g(x)), with the convention that & (+00) = +co. Suppose
that dom( f) # 0. Then, f is convex.

(Restriction on Lines) Given a function f : R” — RU {+oo} that is not
identically +oo, a point xy € R, and a direction & € R™, define the
function fxo,h :R > RU {+o0} by fxo,h (t) = f(xo +th). Then,

is convex iff f, is convex for any xg € R" and h € R,
X0 Yy X0

fm be convex functions sat-
am = 0,

(b)

(c

(d)

©

3.4 Differentiable Convex Functions

Theorem 9 Let f : Q — R be a differentiable function on the open
set Q € R™ and S C Q be a convex set. Then, f is convex on S iff
f(x) 2 f(X)+(VF(x)T(x - %) forall x, X € S.

Geometric interpretation: the epigraph of f is supported by its tangent hyper-
plane at every (%, f(Xx)) € R X R.

Proof Suppose that f is convex on S. Let x, X € S and @ € (0, 1). Then,
F(x) > flaxt(l-a)X)-(1-a) f(X) _ F(F) + f(-i'*'ll(x:l)?))*f(»i') .

—f(x)

@
Now, recall that limnl[) '[(XHY(X;X))

of f at X in the direction x — X and is equal to (V (%)) T (x — X). Hence,
upon letting @ | 0 in (4), we have f(x) > f(X) + (Vf (X)) T (x — X).

Conversely, let x;,xy € S and @ € (0,1). Then, we have X =
ax) + (1 — a)xy € S, which implies that f(x)) > f(x) + (1 —
@) (VFENT (x1 = x2); f(x2) = f(X) + @(VfF(E) " (x2 = xp).
Obtain the result by multiplying first by @ and second by 1 — a and sum. [J

is the directional derivative

= £y vfm‘u,;\

F 1) ,v s
V& “.( ‘\ agvi\»V{r;\itD
-1 -

s <
= §7=-c

Theorem 10 Let f : S — R be twice continuously differentiable on the open
convex set S C R™. Then, f is convex on S iff V2 £ (x) & O forall x € S.
Proof Suppose that V2f(x) = 0 for all x € S. Let x1,xp € S.
By Taylor’s theorem, there exists an X € [x1,x2] € S sit. f(xp) =
FOD)+ (V)T (g = xp) + 3 (v = x) TVEF(R) (x2 = x1).[7]
Since sz(x) = 0, we have (xp — x| )Tvzf()?)(xz —x1) > 0. Upon
substituting this inequality and invoking Theorem 9, f is convex on S.
Conversely, suppose that sz(x) # 0 for some X € S. Then, there ex-
ists a v € R™ such that vT V2f(X)v < 0. Since S is open and V2 f
is continuous, there exists an € > 0 such that ¥’ = X + €v € S and
VTVZf(X + a(x’ — x))v < 0 forall @ € [0,1]. Hence, by taking
x1 =Xandxp = X" in[7], f(x') < f(X)+(Vf(%))T (x’ — %). Hence,
by Theorem 9, f is not convex on S.

To see why S must be open in Theorem 10, consider f : RZ 5 R given
by f(x,y) = x2 — y2, is convex on the set S = R x {0}. But Hessian

sz(x, y) = [(2) —02] for (x,y) € R2, is nowhere psd.

3.5 Examples of Convex Functions
e Let f:R" x S, — Rbegivenby f(x,Y) = xTy 1x.
epi(f) = {(x,Y,r) eR" ><S++><R Y= 0,xTY 'x <r}

(x,Y,r)e]R"xSﬂx]R: =0,Y > 0}, where the

X
r

last equality follows from the Schur complemem This shows that epi( f)
is a convex set, which implies that f is convex on R” x S,

Let f : R — R, be given by f(X) = || X]», where || - |2 de-
notes the spectral norm or largest singular value of the m X n matrix X.
f(X) = sup {uTXv Hully =1, vl = 1} . This shows that f is a
pointwise supremum of a family of linear functions of X. Hence, f is
convex.

Let || - || : R — R4 be anorm on R” and f : R"™ — R4 be given
by f(x) = ||x||P, where p > 1. Then, for any x € R", we have
f(x)=g(llx]l), where g : Ry — Ry is givenby g(z) = zP.

n Pf
« Let f: R — Rbe givenby f(x) —log( exp(x,)). Fxi0%; =
exp(x;) exp(2x;) e
1 - ifi=j,
Zin1 “f“‘” (52, expx))
.
__olxirxy) 5 ifi % J.
(27, en(x))
2 ¢ — 1 T : _ T — (X1 xXn
V2 f(x) Ry ((eTz)diag(z) —zz"), z = (e*1,...,e™n).

Now, for any v € R", we have VTVZf(x)V

= ﬁ [(Z?:l Zi) (Z?:I Zi"iz) - (Z?:I Zi"i)z]
o [ a?) (s ) - (2 v e )|

> 0 by the Cauchy—Schwarz inequality. Hence, f is convex.

Suppose p € (0,1). f: R}, — Rgivenby f(x) = (

X

n )I/P'

£ [0 po |-z ) e
i) | (1= p) o 2P i+).
V2f(x)=(1-p)f(x)2 [—( L xlp)diag(xlpfz,.‘.,xpfz) +27]

-1 .
wherezi=xlp fori=1,...,n.

Now, for any v € R”, we have vT V2 f (x)v
2
— 2 1
= (=p 02 |- (g oF) (2 25 ) + iy it )|

so,since—( ?:lxlp)( 1"1 21{’ ) (anv’ _1) <0

by the Cauchy—Schwarz inequality. It follows that f is concave on R%, .
Let f : S, — Rbe given by f(X) = —Indet X.
VF(X) = -x"1;v2F(X) = X! @ X~!. ® Kronecker product.
Since X~ > 0, X™! ® X~ > 0. It follows that £ is convex on St
Alternatively, we can establish the convexity of f on S}, by applying
Theorem 8(e). To begin, let Xo € S, and H € S". Define the set
={teR:Xo+tH > 0} = {t € R: Apjn, (Xo+1H) > 0}. Since
/lmm is continuous, we see that D is open and convex. Now, consider
fXO H:D— Rglvenbyfx0 H(t)=f(Xo+tH). Foranyt € D,

—Indet(Xy +tH)

= Indet (X2 (1+0x5 P Hxg ) X0 7)

Fxo.H () =

n
- (Z In(1+12;) +1ndelX0)

i=1

2
Frr —_yn i .
and IXO,H(I) =X T2 > 0, where A1, ..., Ay, are the eigen-
values of X(;I/ZHX(;]/z. So fXO,H is convex on D. Together with

Theorem 8(e), implies f is convex on S,

« Boyd: max eigenvalue of symmetric matrix. f(X) = sup{y' Xy :
Iyl = 1}.

3.6 Non-Differentiable Convex Functions

Definition 6 Let f : R” — RU{+o0} be as in Definition 5. A vectors € R™

is called a subgradient of f at X if f(x) > f(X) +s' (x — X)Vx € R™.

The set of vectors s is called subdifferential of f at X and denoted by 9.f (X).

Theorem 11 Let f : R — R U {+oo} be a convex function that is not

identically +oco.

1. If x € intdomf, then df(x) is nonempty and bounded.

2. (Subgradient and Directional Derivative) Let f/(x,d) =
lim | w be the directional derivative of f at x € R" in
the direction d € R \ {0}, and let x € int dom(f). Then, 8f (x) is
a non-empty compact convex set. Moreover, for any d € R, we have
f(x,d) =maxgegr(x) s d.

3. (Subdifferential of a Differentiable Function) The convex function f is
differentiable at x € R iff the subdifferential & f (x) is a singleton, in
which case it consists of the gradient of f at x.

4. (Additivity of Subdifferentials) Suppose that f = fi + fp, where
f1:R"™ > RU{+} and f, : R" — RU {+oo} are convex functions
that are not identically +oco. Furthermore, suppose 3x( € dom(f)s.t. f]
is continuous at x(. Then, we have df (x) = f] (x) + df>(x) Vx €
dom(f).

Example 5 (A Convex Function with Empty Subdifferential at a Point)

£y = {—JI ~ 12 ity < 1
.

o otherwise.
tion with dom(f) = B(0, 1) and is differentiable on int dom(f) = {x €
" lx|lp < 1} Itisalso clear that @ f (x) = O forall x ¢ dom(f). Now,
let X € bddom(f) = {x € R™ : ||x||p = 1} be arbitrary. If s € df(X),

Flx)=—4f1 - llx]l3 = 5T (x = %) forall x € B(0,1).(9)

W.lo.g., we may assume that X = e|. For @ € [-1,1],
x(a) = aey € B(0, 1). From (9), we see that s € R" satisfies
fx(a@)=-V1-a? > as)—s; forallae[-1,1].
However, this implies that s; > +/(1+ @)/(1 — ) forall @ € [-1,1],
which is impossible. Hence, we have 9 f (X) = 0 for all X € bd dom( f).
Example 6 (Subdifferential of the Euclidean Norm)

f(x) = ||lx||>. Note that f is differentiable whenever x # 0. Hence, by The-
orem 11(b)wehave df (x) = {Vf(x)} = {x/||x]lp} forall x € R\ {0}.
Now, recall from Definition 6 that s € R’ is a subgradient of f at 0 iff
llx]l2 = sTx forall x € R™. It follows that £ (0) = B(0, 1).

* Itis clear that f is a convex func-

define



3.7 Example Problems

1.

Let Boo = {x € R" : =1 < x; < lfori = 1,...,n}. For any
X € Boo, consider the set N(x) = {u € R" : u'(y — x) <
Oforally € Be}. (a) Show that N (x) is a convex cone for any
X € Bo.

(b) Give an explicit description of N (x).

A: (a) Let x € B be fixed. For any @ > 0 and u € N(x),
au’ (y = x) <0Vy € Beo. Hence, N (x) is a cone.

Moreover, for any u, v € N(x) and @ € (0, 1), we have (au + (1 —
a)v)T(y —x) < Oforally € Beo. It follows that N (x) is convex.

M Ip=1{i:-1<xi<1}.Iy={i:x;j=1}1_={i:x; =~1}.
u; =0 ifi €Iy,

Define S(x) =qu € R : qu; >0 ifi € I, ¢ . Weclaim N (x) =
u; <0 ifiel

S(x):

Suppose u € S(x). Then, foreachy € Beo, |y;| < lfori=1,...,n
implies 1™ (y = x) = Xiery i (Vi = %i) + Zier, ui (i = 1) +
Sier_ ui(yi +1) < 0. It follows that u € N (x).

Conversely, suppose u € N(x). Leti € {l,...,n} fixed and
xj ifj#i,

«  otherwise.

Since x € Beo, y (i, @) € Bwo. This together with definition of u yields
u' (y(i, @) — x) = uj (@ — x;) < 0. Since the preceding inequality
holds for any @ € [—1, 1], we must have u; = 0ifi € Iy, u; > 0if
i€ly,andu; <0ifi € I_. It follows that u € S(x). This completes
the proof.

Give explicit expression of f™

a@ € [~1, 1] arbitrary. Define [y (i, @)]; = {

, the conjugate of f.

xInx ifx >0, _
(a) Letf(x) = {+oo otherwise (note that 0In0 = 0). (b)
f(x) = x|
() Let C = {x € R} : [lx]lz < 1} and i¢ the indicator function of C.

(d) Let C C R be a convex cone and ic be the indicator function of C.
() f:R" - Rby f(x) =cTx+d.

() f(x) =21, —Inx;. () f(x) = XL |xi].

Az (@) f*(y) —SUPxeR{yx f(x)}—supx>o{yx xInx}.

x > yx — x Inx is maximized at x* = exp(y — 1) > 0.

fr) =yexp(y 1) = (y - Dexp(y — 1) =exp(y - I).

®) f*(¥) = supyer{yx = [x|} = supyep {|yllx] - |x]}.

f(),{ if [y <1,

+00  otherwise.
©ig(y) = supyepn (¥ x —ic (x)} = supyec ¥ x-
Now, let x € C and y € R" be arbitrary.

Ty — —vT —
YTx = Riy; 20 Xi Vi + ity <0 %iVi < iy 20 Xiyi =y x' =

yix
xj ify; >0
h ro= 0 J ? P= i for j =
where X; {0 otherwise, and () = max{y;, 0}, for j
1,...,n.

It follows from the Cauchy-Schwarz inequality that 7¢~ (y) = [|y+l2.
@ i5 (y) = supyepn {yTx +ic (%)} = supyec ¥ x. Since C is
a cone, we have ax € C for all @ > 0 whenever x € C. It follows that
N 0 ify’'x<OforallxeC,
‘c o) = {+oo otherwise.

(e) By definition, we have f*(y) = supyepn (y — ¢)Tx — d. Ob-

. (negative dual cone)

0 ify=c
. . Ty = . - _
serve sUpyegrn (y — ¢) ' x {+c>o otherwise. It follows f*(y)
-d ify=c,
+o0o  otherwise.
() = SUP R {yTx + 20 Inx; =

SUPyer? Zg;] (yixi +Inx;).

-1 -In(-y;) ify; <0,
SUPx; Ry (YiXi +Inx;) = {+oo ' othelrwise.
leln( yi)—n ify e R?_
1= { otherwise.

(@) f*(y) =ipy,where B={y e R" : |y;| < 1fori =1...n}

Let A € R™ and b € R™ be given. Consider the polyhe-
dron P = {x € R?" : Ax < b}. Forany x € P, define
N(x)={ueR":u"(y—-x) <Oforally € P},
O(x)={ATzeR":z"(b-Ax) =0,z € R},

(a) Show that Q(x) € N (x).

A:Letu € Q(x). Then, we have u = AT z for some z € R sat-
isfying zT (b — Ax) = 0 and z > 0. Now, for each y € P, we get
zTA(y-x) < z7 (b—Ax) = 0, (inequality from z > Oand Ay < b).
() Letu € R" st u ¢ Q(x). Let I(x) = {i : a]x = b;},
where a;r is the i-th row of A. Show JIw € R™ \ {0} satisfying
w'la; <0Viel(x).

A:If I(x) = 0, then every w € R™ \ {0} satisfies the desired conclu-
sion. Assume /(x) # 0. Since Q(x) is a non-empty closed convex set,
by the separation theorem and the definition of Q(x), 3w € R™ \ {0}
s.t.

0" = max{wTATz:27(b-Ax)=0,z € R"} < wTu.(3).
Since {z € R™ : zT (b — Ax) = 0,z > 0} is a cone containing
the origin and RHS of (3) is finite, 6 = 0. Now, for each i € I(x), the
i-th basis vector ¢; € R satisfies elT (b—Ax) =0ande; > 0. It
follows wT ATe; =wTa; < 0* foralli € I(x).

(c) Show that for some € > 0, we have x + ew € P, where w is the
vector found in (b). Hence, conclude that u ¢ N (x).

A: Case 1: i € I(x). (b) implies u;r(x +€ew) < bj forall € > 0.
Case2: i ¢ I(x). Since x € P, we have a;rx <b;. IfwTa; <0,we
have a;.r (x+ €w) < bj forall € > 0. On the other hand, upon letting
€2 ... >0, weseethatif w' a; > 0, then a;r(x + €ew) < b forall
€€ (0,€].

Putting the above two cases together, we conclude x + éw € P. Finally,
using (3), we have uT ((x + éw) — x) = Eu’w > 0. It follows that
ug N(x).

Let K C R" be a closed convex cone and x € R satisfying x ¢ K.
Show there exists b € R” satisfying b’ w < 0 < b x forall w € K.
A: By separation theorem, 3b : max,, cx b’ w < b x  (x)

Note that 0 € K. = max,exb'w > 0. We claim
max,,cx bTw =0.

Suppose not. Then, 3w € K s.t. bTw > 0.

Since aw € KVa > 0,then ab™w < b xVa > 0.

Due to *. Taking @ — +oo leads to a contradiction.

23Q4. Sy = {X e R4 . XT = X} Let 4 (X) = p(X) > ... >
A4 (X) denote the eigenvalues of X € S in descending order. (a) Let

k < d, show le‘:]
I

i (X) = supy, paxk TI(VTXV) st VTV =

(b) Show the function is convex over X € S9: f(X)= Zle A (X).

A: (a) Since X is symmetric, exists an orthogonal matrix U € Rrdxd
such that X = UAUT, where A = diag(dy,...,44) Take V
as the first k columns of U, ie., V = U. j.x. Then, we have
w[VIXV] = $K 4;(X), which implies that 35, 2;(X) <
SUPy, pdxk T(VTXV) st. VIV = I. Also we have
Tr(VTXV) = T(VTUAUTV). Let W = UTV e RIXk

Tr(VTXV) = Ti(WTAW). Let W = [w];...
diagonal, Tr((WTAW) = 216'1:1 Aillwill2. Since WTW = Iy, we
havezl L Iwill? < keand [fw; |2 < 1. Thus, sup & Az [|wi || <
sup L) A

(b) From (a) we know f(X) is the pointwise supremum of a family of
linear functions tr(VT XV).

22Q1. f: R4 — R convex and differentiable. Suppose exists L > 0s.t.
0 f)=fF) =V (x~ ») < Bllx-yl% V. y. Show:

;w;] Since A is

FE)=f(3) S V@) T (x=y)= - IVF(x) -V D)2, Vi, y.
ArSetz =y - £(Vf(y) - Vf(x)> = Vf(y) - Vf(x) =
L(y - z)(*.

FE) = fO) V)T (x—y) = 2 lly - zl?
c»f(x)—f(z>+f<z>—f<y>_Vf<x> (x-y) - Ely-z)?
& f)-f@+f(2)-f(¥) < VF)T(x- Z)+Vf(x)T(z—

y) - Lly-z)?

From convexity: f(x) — f(z) < Vf(x)T (x - z). (1)

From statement: f(z) = f(y) = Vf(») T (z-y) < %z -yl
(*)Vf(y)=V£>(X)+L(ny)

F@ =) V@O z-y) - Flz-yI?@

W+Q: f(x) - F() V@O Tx -y - kly-z12 2O

22Q3. Consider a function f : R4 - R. The function fis
said to be quasi-convex if all of its sublevel sets are convex sets, i.e.,
Sa={xeRd: f(x) <

(a) Consider the function f(x) =

a} is a convex set for any @ € R.
4, i*’s where a, b, ¢, d are some
fixed vectors/scalars. Let X = {x eRY:c¢Tx+d =1} Is f(x)
convex over X? Is f(x) quasi-convex over X? Justify your answer.

(b) Show that for any quasi-convex function, itholds f (a@x+(1-a)y) <
max{f(x), f(y)}, forany x,y € R and @ € [0, 1].

&
A: (a) Sq = {x eRrd: fT;CIZ < a/} ={x e R4

a(cTx+d)} ={x eR? : (a - ac)Tx < ad — b}, which rep-
resents a halfspace (a convex set). Therefore, f(x) is quasi-convex over
X.

(b) Assume there exists y,z and @ € [0,1] such that
flay + (1 — @)z) > max{f(y), f(z)}. Consider sublevel set

Smax(f(y),f(z)) = {x € RL: f(x) < max{f(y), f(z)}}. Then
Y22 € Smax(f(v),f(z)}> DUt @y + (1 = @)z & Smax( 1 (y).f (2)}+
contradicts quasi-convexity of f.
Geometric mean of k smallest eigenvalues.
1/k

f(X) = ( e k+1/li(X)) is concave on S, : For X > 0,
FX) = $inf{u(VTXV) | V e R™K detVTV = 1}. fis the
pointwise infimum of a family of linear functions tr(V T XV).
Log of product of k smallest eigenvalues.
2?:n—k+l logA; (X) is concave on SP,: For X > O,

o A0 =inf { [T (VIXV) |V e RXK VTV = 1
f is pointwise infimum of a family of concave functions
log [T; (VT XV);i = i log(VTXV);;.
/l{" : 8™ — Rreturns the sum of the k largest eigenvalues of its argument.
(@ Show AK (A) = max tr(AX) stw(X)=kI=X=0.
(b) Show /llf is convex for each k > 1.
A: (2) tr(AX) = tr(UAU T X) = tr(AU T XU). Since
tr(X) = t(XUUT) = tr(UT XU) and

ta'x+b <

vIiXv = (UTv)T(UTXU)(UTv) foranyv € R™, we see that
X € Uy iff UTXU € Uy, where Uy = {Z € S" : w(Z) =
k1= Z 20

The given problem is equivalent to tr(AX) = tr(XUU') =
tr(UT XU).

Now, we claim that there exists an optimal solution to (1) that is diagonal.
To see this, observe tr(AX) = Z?:l AiiXji,and I = X = O implies
that X;; € [0, 1] fori =1,2,.
diagonal matrix X* = diag(X}
same objective value as X*.

n In particular, if X™* is optimal, then
e 22, ..., X}y, ) is feasible and has the
This establishes the claim. Consequently,
equivalent to max Z?:I Ajixi s.t Z?:I xi=k, 0<x<e.
® fx : S" - Rby fx(4) = w(AX). Af(4) =
maxxey, fx (A);ie., /l{‘ is the pointwise supremum of a collection
of linear functions.
Let f : R — R U {+0c0} be a convex function s.t. epi(f) is closed
and f is not identically +00. (a) Show f = f**, where f** = (f*)* is
the conjugate of f*. (b) Show for any x,y € R, the following state-
ments are equivalent: (i) y € 8.f(x); (i) £(x) + f*(y) = x " y; (iii)
x € df*(y).
A @ f(X) = sup(y eyes; (T3 = e}, where S = {(7,¢) €
R XR:y'x—c < f(x)forallx € R"}. Moreover, Sy =
epi(f*). Hence, we have (y,c) € Sg iff f*(y)
Fx) = supyegn {3 Tx = £* ()}
(b) Suppose that (i) holds; i.e., y € df (x), f(z) = f(x)+yT (z—x)
forallz € R, yTx — f(x) >y z— f(z) forall z € R™. In partic-
ular, we have y T x — f(x) > sup,cpn {yTz = f(z)} = f*(y). On
the other hand, f(x) > yTx— f*(y). Hence, f(x)+f*(y) =y x;
i.e., (i) holds. By reversing the argument, the converse also holds.
Next, suppose (ii) holds; i.e., £(x) + f*(y) = y' x. By result in (a),
(%) + f*(y) = xTy. Since f**(x) = z'x — f*(z) for all
z € R, weobtain yTx > f*(y) +z'x — f*(z) forall z € R",
or equivalently, £*(z) > f*(y) +x" (z - y) forall z € R™. This
shows that x € df*(y); i.e., (iii) holds. Again, the converse follows by

< ¢, implies

reversing.
S={XeS" : Amax(X) <1, X0} ={XeS": 1% X0}
convex.

= {X € §™ : rank(X) < 1} not convex: Let X| = eleir and

— prel
Xy =ere,

4 Linear Programming

4.1 Basic Definitions and Properties

Definition 1 Let s € R \ {0} and ¢ € R be given. Then, the set of solutions

to the linear equation s x = c, namely, H = {x € R" : s"x = c},

is called a hyperplane in R”. Associated with every hyperplane H are the

two halfspaces H~ = {x e R" : sTx < ¢} and H* ={x e R":

sTx > c}. s isanormal of H.

H=H"NnH ;R"=HYUH~. H, H", H™ are all closed convex sets.

Geometncally, a hyperplane is an (n — 1) dimensional affine subspace; i.e.,
={X}+VwhereV={xeR":s x=0},% = ﬁs

Proof: Since V is the set of vectors that are orthogonal to s, it is a linear

subspace of dimension n — 1. Moreover, a simple calculation shows that

s'x=c(e,X € HandX+x € Hforanyx € V. Thus, H 2 {x}+V.

Conversely, for any y € H, we have x = y — X € V, which implies that

H C {x}+ V. Itfollows that H = {X} + V, as desired. [J]

Definition 2 A polyhedron is the intersection of a finite set of halfspaces. A

bounded polyhedron is called a polytope.

In particular, a closed convex set P is a polyhedron iff can be represented as

P={xeR": a;rx <bjfori=1,...,m} (1)

for some given @y, ..., am € R and by, ..., by € R.

4.2 Extremal Elements of a Polyhedron

Consider now a point X € P, where P C R is a polyhedron of the form (1).
If the index i € {1,...,m} is such that a;.r)? = bj, then we say that the
corresponding constraint is active or binding at X.

Theorem 1 Let P C R” be a polyhedron of the form (1), and consider a point
xeP. Letl ={i: a X = b; } be the set of indices of constraints that are
active at X. Then, the followmg are equivalent:

(a)There exist n vectors in set {a; € R™ : i € I'} that linearly independent.
(b)The point X € R" is the unique solution to the following system of linear
equations: a;rx =b; foriel.

Definition 3 Let P C R’ be a polyhedron and x € R’ be arbitrary. The
vector x is called a basic solution if there are n linearly independent active
constraints at x. If in addition we have x € P, then we say that x is a
basic feasible solution.

An extreme point is a point that does not lie strictly within a line segment

connecting two other points of the set.

Theorem 2 Let P C R’ be a polyhedron of the form (1) and x € P be
arbitrary. Then, the following are equivalent:

(a) x is an extreme point. (b) x is a basic feasible solution.

Remark: Also use vertex to mean an extreme point/basic feasible solution.
Proof Suppose x € P not a BFS. Let I = {i : u x = b;}. Then, the
family {a; € R"™ : i € I} does not contain n ]mcdrly independent vec-
tors. Hence, there exists a non-zero vector d € R’ such that a;rd =0
forall i € I. Now, let € > 0 be a parameter to be determined, and set
x] =x—€d € R"and xp) = x + ed € R"™. Clearly, for any i € I,
Tx Tx = bi. Moreover, for any i ¢ I, we have

we have a‘.TxI =a;x=aq;

a’Tx < bj because x € P. It follows that for sufficiently small € > 0, we
have a;rxl < bj and a;rxz < b; forany i ¢ I. Hence, x|, xy € P. Since
x = (x1 +x2)/2and x| # xp, we conclude that x is not an extreme point.
Conversely, suppose that x € P is not an extreme point. Let x;,xp € P
be such that x| # xp and x = (x| +x2)/2,and let [ = {i : @/ x = b; }.
<bjfori=1,...,m,
which yields alT,xl = a;.rxz = a;rx = b; forall i € I. This implies that

o . e have a T L T
Since x1, xp € P,wehave a; x| < b and a; xp

the system of linear equations al.Tz = b; for i € I has more than one solution
in z € R™. Hence, by Theorem 1, x is not a basic feasible solution. O
Example 1 (Non-Polyhedrality of the Euclidean Ball)

Proof: Consider the B(0, 1) c R, which is a closed convex set. Suppose
B(0, 1) is a polyhedron. Then, it admits a representation of the form (1).
‘Observe that the maximum number of basic feasible solutions in such a rep-
resentation is (','l'), which is finite. By Theorem 2, this is also the maximum
number of extreme points of B (0, 1). However, this contradicts the result that
the number of extreme points of B(0, 1) is infinite. Thus, we conclude that
B(0, 1) is non-polyhedral. Itis worth noting that B (0, 1) can be written as the
infinite intersection of halfspaces (1 ycgn ldlly=1 {x eR":d"x < 1}.
Definition 4 A polyhedron P C R contains a line if there exists a point
x € Pandavectord € R™ \ {0} such that x + ad € P forall @ € R.
Theorem 3 Let P C R’ be a non-empty polyhedron of the form (1). Then,
the following are equivalent: (a) P has at least one vertex. (b)P does not
contain a line. (c) There exist 7 linearly independent vectors in {a; } e

4.3 Existence of Optimal Solutions to Linear Programs

Now, let P € R be a non-empty polyhedron of the form (1) and i € R" be
a given vector. Consider the LP minyep h' x. (¥)

Theorem 4 Consider the LP (*). Suppose that P has at least one vertex. Then,
either the optimal value is —oo, or there exists a vertex that is optimal.

Proof Before we proceed, let us introduce a definition. We say that x € P
has rank k > 0O if there are exactly k linearly independent active constraints at
x. Now, suppose that the optimal value is finite. Consider an x € P of rank
k < n. Our goal is to show that there exists some y € P of greater rank and
satisfies hTy < hT x. We can then repeat until reach an optimal vertex.
Asusual, let / = {i : a;r)c = b; }. Since there are only k < n linearly inde-
pendent vectors in the family {a; € R™ : i € I}, thereexistsad € R™\ {0}
such that a;r(] =0foralli € I. Wlo.g, assume h'd < 0.

Case 1: hTd < 0. Consider the half-line £ = {x+ad : a > 0}. Clearly,
forany y € Ly andi € I, we have alTy = b;. Now, if Ly C P, then the
optimal value would be —co, which we have assumed not to be the case. Hence,
there exist a scalar @ > 0 and an index j ¢ I such that a;.' (x+ad)=>b

Lety = x+ @d. Then,wehave hT y < h x. Moreover, following the argu-
ment in the proof of Theorem 3, we see that the family {a; : i € I} U {a;}
is linearly independent, which implies that y € P has rank at least k + 1.

Case 2: h'd = 0. Consider the line £ = {x + ad : a@ € R}. Since P
does n()t contain a line, there exists a scalar @ # 0 and an index j ¢ I such
that aj; T(x+ad) = bj. Lety = x + @d. Then, we have KTy =h"x,and

the mnk of y € Pisatleast k + 1.

In either case, we obtaina'y € P whose rank is greater than that of x € P and
satisfies 7Ty < h' x. By repeating the above process, we will end up with a
z € P whose rank is 7 (i.e., z is a vertex of P) and satisfies hTz < hT x
To complete the proof of the theorem, let z, , Zr be the vertices of P
and set i = argmin <; <, KT z;. Our argument above shows that for every
X € P, thereexists ani € {1,...,r} suchthat h"z; < h' x. It follows
that hTz,-g: < hTxforallx € P;ie., z;# € P is an optimal vertex. O
Consider the polyhedron P’ = {(x*,x7,s) € R" xR x R :

a;r()cJr —x")+s;=bifori=1,...,m; x*,x7,s > 0}. Note if
x; ifx; 20, _ 0 if x; >0,
x € P, then setting x = {"* L= o= b=
t 0  otherwise, ! —x; otherwise,



sj = b_,— - u}—x for j=1,...,m, wesee that (x*, x™,s) € P’.
Conversely, if (x*, x™,s) € P’, then by setting x = x* — x~, we have
mingep BT x =miny+ v~ oepr b7 (x* = x7);ie., minimizing 2T x
over P is equivalent to minimizing h' (x* — x~) over P’. Furthermore,
note that the polyhedron P’ does not contain a line, and thus by Theorem 3,
P’ has at least one vertex.
Corollary 1 Consider the LP (*). Suppose that P is non-empty. Then, either
the optimal value is —oo, or there exists an optimal solution.
Eginfy> x~! shows nonlinear optimization need not have such a property.
To simplify, let y = (x*, x 7, 5) € R x R” x R = R2™*™ _Define

T

al -a r 0 - 0
a;r —a;r 0 1 e 0

A= e RMXx(2n+m)
ay, -ap 0 0 .o 1

b=(by,....bm) €RM, c¢=(h,—h,0) € R2m

Then, the problem of minimizing AT (x* — x™) over P’ can be written as
minimizecy subjectto Ay = b, y > 0. 3)

‘We shall call an LP problem of the form (3) a standard form problem.

Example 2 (Conversion to Standard Form LP)

LetP = {x e R?: e;rx >1} cR2and h =e] € R2 in the LP (¥). It is

clear that (1, x7) is an optimal solution for any x5 € R. The polyhedron P’ is

x3,8) € R): X -xy-s=1}c R3 and

Z_’S)EPI XT - Xy Since P’

givenby P’ = {(x7, x}, x
the LP (*) is equivalent to min<x+ xFx— x
1772771

has at least one vertex, by Theorem 4, the LP (4) has a vertex optimal solution.
Thisis given by y* = (1,0, 0, 0, 0). To verify y* is a vertex of P’ it suffices
to verify the five active constraints Xl+ =1, x; =0, Xf =0, xz’ =0,s=0
are linearly independent; see Theorem 2.

4.4 Theorems of Alternatives

Theorem 5 (Farkas’ Lemma) Let A € R and b € R be given. Then,
exactly one of the following systems has a solution:

Ax=b, x>0.(5 ATy<0, bTy>0.(6)
&9 n=2 \: _‘1‘ S‘-§’\'x~x>,o\
Sfay LA
A= [“f“f\ N Ax=2 xa
//// .
c e
. AB:I"\‘; <o
Ayso oy)so

Corollary 2 (Gordan’s Theorem) Let A € R"”X" be given. Then, exactly
one of the following systems has a solution:

Ax>0.(8) ATy=0, y=0, y#0.(9)
Proof (S1) (8) and (9) cannot both have solutions, otherwise there would exist
feR"andy € R st. 0= (3TA)X =3 (Ax) > 0, contradiction.
(S2) Now, note that (8) is equivalent to Ax > e, since we can scale both sides of
(8) by any positive scalar. On the other hand, the system Ax > e is equivalent
to the system Az = e, z > 0, where A=[A — A —I] € RMX (2n4m)
and z = (xT,x7,5) € R%’”m. Now, by Farkas® lemma, if the system
Az = e, z > 0 has no solution, then there exists a y € R’ such that
ATy <0andeTy > 0. From definition of A, wesee ATy = 0andy > 0.
Moreover, since ¢ | y > 0, we conclude y # 0. This completes the proof. []
Lemmain 21Q4: ) Ax >0, x >0. (I)yTA<0,y>0,y#0.
Lemmain 23Q5: DUx=v, x >0. (I)y'U >0, y"v <0.
A list of equivalence tricks:
1.(Cor2)Ax >0 & Ax>e < [A -A -I|z=e,22>0;
2. (Cor2)e’'y >0 & y#0;
3. (Thm 7, HW 1b) “>" or “<”: Homogenize by switching x to x/z,¢ > 0;
4. (Thm 7, HW 1b, 17Q1) Ax = bt & Ax — bt > 0,-Ax +bt > 0to
match (I); or Ax < b & (A, -I)(x,s)T = b, (x,s) > 0 tomatch (I).
5. (HWla)Ax <0,Ax #0 & Ax <0,e' Ax=—1.

4.5 LP Duality Theory
v;‘, =min ¢! x (P)
Suppose that we can find a vector y € R such that ATy < c. Then, for any
x € R that is feasible for (P), we have bTy = xTATy < ¢ x, where the
equality is due to Ax = b and the inequality is due to x > 0 and ATy <c.
Since the above inequality holds for any feasible solution x € R to (P), it
follows that b1 y provides a lower bound on v, forany y € R™ satisfying

subject to Ax = b, x > 0.

ATy < c. Naturally, we are interested in finding the largest lower bound on
v;,. This motivates us to consider the following optimization problem:

v:i =max by subjecttoA’y < c. (D)
Note that (D) is also an LP. In the sequel we shall call (P) the primal problem
and (D) its dual problem. Our discussion above leads to the following result:
Theorem 6 (LP Weak Duality) Let X € R" be feasible for (P) and y € R
be feasible for (D). Then, we have hT)_/ <cTx In particular, v; > v;.
Corollary 3 The following hold:

(a) If the optimal value of (P) is —oo, then (D) must be infeasible.

(b) If the optimal value of (D) is +co, then (P) must be infeasible.

(c) Letx € R™ and § € R™ be feasible for (P) and (D), respectively. Sup-
pose that the duality gap A(%,5) = ¢'X — by = 0. Then, X and
are optimal solutions to (P) and (D), respectively.

Note: It’s possible for both (P) and (D) to be infeasible.

Theorem 7 (LP Strong Duality) Suppose (P) has an optimal solution

x* € R™. Then, (D) also has an optimal solution y* € R, c¢Tx* = b T y*.

Proof: (S1) Suppose (P) has an optimal solution x* € R’*. Then, the system

Ax=b, x20, (10)

does not have a solution in x € R,

(SH) To apply Farkas’ lemma, we first homogenize the above system to get
Ax —bt =0, ¢"x—-(c"x)t=-1<0, (x,2)=0. (1)

We claim that (11) has no solution in (x, #) € R X R. Indeed,

(i)if (x’, ¢") is a feasible solution to (11) with #/ > 0, then x” /¢’ is a solution

to (10), which is a contradiction.

(i) if ’ = 0, then we have A (x* +x’) = b, x* +x” >0, ¢ (x* +x’) =

¢Tx* =1 < ¢T x*. This shows x* + x” is a solution to (10), which again is

a contradiction. Thus, the claim is established.

(S2) By Farkas’ lemma: Qw =h, w > 0.

('TX < CT)C*

Q7z<0, h'z>0.
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Corollary 4 Suppose that both (P) and (D) are feasible. Then, both (P) and
(D) have optimal solutions, and their respective optimal values are equal.

The task of finding optimal solutions to (P) and (D) is equivalent to finding a
feasible solution to the following linear system in (x, y) € R™ x R":
Ax=b, x>0, (primalfeasibility)

ATy <c, (dual feasibility)

¢Tx=bTy. (zeroduality gap),

the problem of linear optimization is no harder than that of linear feasibility.
Theorem 8 (Complementary Slackness) Let X € R" and y € R be fea-
sible for (P) and (D), respectively. Then, the vectors X and y are optimal for
their respective problems iff X; (c — AT§); =0fori=1,...,n.

Proof Using the fact that AX = b, we have (12)
cTx-bTy=c"x-x"TATy=xT(c-ATy) = ARG ATH);.
Now, if ¥; (c = AT§); =0fori = 1,...,n,thenwehavec' X =b" 3. By
the LP strong duality theorem, we conclude that X and y are optimal for their
respective problems. Conversely, if X and y are optimal for their respective
problems, then by the LP strong duality theorem, we have ¢ X — b1 3 = 0.
Since X > Oand ¢ — AT§ > 0 by the feasibility of X and ¥, we conclude by
(12) that X; (c = AT§); =0fori=1,...,n O

From Theorem 8, we see that another way of solving (P) and (D) is to solve
the following (nonlinear) system in (x, y, s) € R x R x R™:

Ax=b, x>0, (primalfeasibility)
ATy+s=c, (dualfeasibility)
xisi =0fori =1,...,n. (complementarity)

Example 3 (A Simple LP) Consider the following LP:

minimize x| +2x7 + x3 subjectto x| — 2xp +x3 > 2,
—Xx]+x3 2 4,
2x1 +x3 26,

X| +Xp+Xx3 =2,
x> 0.

To derive the dual, we put it into standard form:

minimize  (1,2,1,0,0,0,0)7 (x1, X2, X3, 5, 82,53, 54)

1 -2 1 x| 2
subject to El g % =1 iz = 2
1 11 s] ]2
(x,s) > 0.
Dual:
maximize (2,4, 6, Z)T(yl,yz,ys, v4)
1 -1 2 1][w 1
) -2 0 0 1If|m|_ |2
subjectto || 1 11|y Sl
.y V4 0

Now, point (%, §) = (X1, X2, X3, 51, 52, §3, §4) = (%,O, L o,0, ‘3—0) ,
feasible for Primal. By Theorem 8, the point (X, §) is optimal for Primal iff
there exists a feasible solution y € R* to Dual such that

Y1 =y4=0, (sincesy,54 >0) -y2+2y3=1 (since X; > 0)
Yo+y3=1, (since x3 > 0) ¥2,93 20,  (dual feasibility)
or equivalently, point y = (0, %, %, 0) is feasible for Dual (easily verified).
Hence, we certified the optimality of primal-dual pair of solutions (X, §, ¥).
Note we also have (1,2,1,0,0,0, O)T()?] , X0, X3,581,5,53,54)

= % =(2,4,6,2)T (31, 2, ¥3, ¥4); i-e., the duality gap is zero.

By Theorems 4 and 6, we know that Problem (13) has a vertex opti-
mal solution.  Recall from Definition 3 that each vertex of the feasi-
ble region of Problem should have three linearly independent active con-
straints. (=1,0, )7 (%1, %, %3) =4, (2,0, 1)T (%1, %, %3) =6,
(0,1,0)T (X1, X, X3) = 0, are linearly independent (they correspond to
the coefficient vectors (—1,0, 1), (2,0, 1), (0, 1,0)), we conclude that X
is a vertex optimal solution to Problem.

4.6 Conclusion on Optimality Conditions

min ¢’ x max by
s.t. Ax=b, P) s.t. ATy+s=c, (D)
x20, 520,

where A € R™X" b € R™, and ¢ € R are given. The solutions x*
and (y*, s*) are optimal for (P) and (D), respectively, iff they satisfy the
following optimality conditions:

x;‘ s: =0 fori=1,...,n, (complementarity
Ax*=b, x*20, (primal feasibility’
ATy* +s*=c, s*20. (dual feasibility)

4.7 An Approximation Algorithm for Vertex Cover

Consider a simple undirected graph G = (V, E), where each vertex v; € V
has an associated cost ¢; € R4. A vertex cover of G is a subset S C V such
that for every edge (v;, v_f) € E, at least one of the endpoints belongs to S.
We are interested in finding a vertex cover S of G of minimal cost.

Now, let x; € {0, 1} be a binary variable indicating whether v; belongs to
the vertex cover S or not (i.e., x; = 1 iff v; € S). Then, the minimum-cost
vertex cover problem can be formulated as the following integer program:

vi=minc x= Z cixp stoxp+xj21
ieV

for (vi,vj) € E,

x e {0,111,
Using the fact that ¢ > 0, it is not hard to show that the resulting problem is
equivalent to the following LP, which is called an LP relaxation of Problem:
vi=min ¢'x st ox; +xj 21 for (vi,vj)€E,
x20.

Clearly, we have v;: < v*. Suppose that x” is an optimal solution to Problem
(7). Tt is then natural to ask whether we can convert x” into a solution x’’ that
is feasible for Problem (6) and satisfies cTx" < avy for some @ > 0. The
key to proving this is the following theorem:
Theorem 3 Let P C RV be the polyhedron defined by the following system:

xi+xj 21 for(vi,v;) €E

x > 0.
P. Then, we have x; € {0,1/2,1} fori =1,...,|V]|.

’ Suppose that x is an extreme point of

Proof Let x € P and consider the sets

Uop={ief{l,....VI}:x; € (0,1/2)};
Up={ie{l,....,|V[} :x; € (1/2,1)}.
Fori=1,...,|V]|and k € {—1, 1}, define

xi+ke if ieUg, x; —ke if ieUyg,
vi = - . B

X otherwise Xi otherwise.

By definition, we have x = (y + z)/2. If either U_y or U] is non-empty,
then we may choose € | 0so that y, z € P, and that x, y, z are all distinct.
It follows that Uy, = 0 for k € {—1, 1} if x is an extreme point of P. [J]
Corollary 1 There exists a 2—approximation algorithm for the minimum—cost
vertex cover problem.
Proof We first solve the LP and obtain an optimal extreme point solution x”.
Now, by Theorem 3, all entries of x” belong to {0, 1/2, 1}. Hence, the vector
o o _|xpoitx]=0orl,
x"" defined by x;" = Y

) fori = 1,...,|V| is feasible
1 ifx! =
for Problem. Moreover, objective value cTx"” <2cTx" = 2\7; <2v*. 0O

i =

4.8 Example Problems

1. 1. Farkas Lemma:
@@ Ax <0, Ax#0, x > 0. a ATy =0, y>0.
A: (S1) The systems (I) and (IT) cannot be simultaneously solvable. In-
deed, suppose that ¥ € R’ solves (I) and y € R’ solves (II). Then,
since y > 0, AX < 0and Ax # 0, we have )'JTAX' < 0. On the other
hand, since X > 0 and AT)_) > 0, we have )‘JTA)? > 0. This results in a
contradiction.
(S2) Suppose (I) is not solvable. Then, by a simple scaling argument, we
see
(INAx <0, e Ax = =1, x > 0 is not solvable either. (I') equivalent

A I|[x]|_[oT
L,TA oT | s 2[71], (x,s) 20.
T T, 15
By Farkas’, 37 = (i, 7) € R+ gy [AI Aoe ltf >0,7>0,

orequivalently, AT (i +7e) >0, it > 0, 7 > 0. Now, let § = it +7e €
R, Clearly, we have AT § > 0. Moreover, since it > 0 and 7 > 0, we
have y > fe > 0. It follows that (II) is solvable, as desired.

b) A e RN b eR™ ¢ e R" d e R 3Ix € R" satisfying
AX < b.

O Ax <b, c"x>d. am ATy=c, bTy<d, y=0.
A: (S1) The systems (I) and (II) cannot be simultaneously solvable. If
X € R solves (I) and y € R solves (I), thend < ¢ X = T A% <
bT§ < d, which is a contradiction.

(SH) We claim that (I) is solvable iff (') Ax — bt < 0, ¢'x — dt >
0, t > 0is solvable. Indeed, if x” solves (I), then (x’, 1) solves (I').
Conversely, suppose that (x’, ") solves (I').

(i) If ¢’ > 0, then it is easy to verify that x” /" solves (I).

(i) If ¢’ = 0, then Ax" < O and ¢'x’ > 0. Since AX < b by
assumption, letting x”’ = X + @x’ with @ T oo, we have ¢! x”" =
cTx+0cTx" >dand Ax” = A(X + 0x’) < b. It follows that x”’

solves (I).
(S2) Now, note that (I') takes the form
- A -D||x T x
) [0 IR -d]|;|>o0.
Suppose that (I”) is not solvable. By Farkas’ lemma, we see that
m (AT O P]=] e >0, s> 0is solvabl
ar) b7 Z1|ls| = |=al> Y20 s 20issolvable.

This implies that (II) is solvable, as can be easily verified.

Construct a primal-dual pair of linear programs such that both the primal
and the dual have a unique optimal solution.

A: There are many possible constructions. For instance, consider the
following primal-dual pair of standard-form LP:

»

(P) minimize x|
xX1+x =1,
subjectto § x| — xp =0,
x1,xp 2 0.
(D) maximize y|
+y <1,
subject to {yl ¥2 2
y1-y2<0.

3. LetA € R™*™ and ¢ € R be given. Let v : R”" — R be the function
defined by v(b) = minimize ¢ T x subjectto Ax > b, x > 0. (1),
i.e., v(b) is the optimal value of (1) when RHS of first inequality con-
straint is b.

(a) Let b € R be fixed. Find the dual of Problem (1).
(b) Using the result in (a), or otherwise, show that the function v(-) is
convex on the set {b € R : v(b) is finite}.
-b
x < [ 0 ] .

A:(@v(b) = —max(-c)Tx s.t. [_‘?

Dual: maxbTz st. ATz+w=c(orATz<c), z,w=>0.
() v(b) =maxbTz s.t.ATz < ¢, z > 0. by the LP strong du-
ality theorem. Since v(-) is a pointwise supremum of the collection
{b+—bTz:ATz < c, z >0} of linear functions, v (-) is convex.

4. 23Q5. Let A € Rpx‘l, b € RP be given. Consider the set:
X ={x € R? : Ax = b,x > 0}. Show that X is bounded iff
there exists € RP such that ATu > 0. Hint: the set X is unbounded
iff there exists ¢ € RY such that Ac = 0,¢c>20,c#0.

A: Follow the proof of Gordan’s Theorem.

21Q4. Let A € R b ¢ R™ ¢ € R, consider the following two
sets:
S={xeR": Ax > b,x > 0},
c,y >0}

(a) Suppose that T # 0, S # 0. Prove that at least one of the above two
sets is unbounded. Hint: notice that if there exists a direction d € R™
such that Ad > b,d > 0,d # 0, then S must be unbounded.

(b) Could both of the two sets be unbounded simultaneously?

Farkas: (D) Ax >0, x > 0. (IDy'A<0,y>0,y#0. A: (a)
Suppose Farkas (2) holds: 3 y* s.t. ATy* < ¢, y* > 0, y* # 0. Since
T#0,3yst. ATy <c, 20, §#0. Then consider y = y* + 3:
AT (y*+79) <c, y*+35 > 0. Then T is unbounded.

Suppose Farkas’ lemma (2) does nothold: 3 x* s.t. Ax* > Qand x* > 0.
Since S # 0, 3 X s.t. AX > b, ¥ > 0. Then Ax + Ax* > b and
X+ x* > 0. Since AX + Ax* > b, x+x* >0, Xx+x* £0, then S is
unbounded.

(b) Yes, they can. Let A = [0 0] € Rlxz, b=0,c= [0] € R2,

Then for any x € R2, we have Ax =0 > b = 0. Forany y € R4, we

ol

T={yeR": ATy <

Ty =
have A"y = [O
Thus, both S and T in this case are unbounded.



5. Farkas: (I) Ax > 0, Ax # 0; (I) ATy =0,y >0.
A:(S1) Suppose ¥ € R™ and y € R satisfying (I) and (II). Then, since
y > 0,Ax > 0,and AX # 0, we have )_ITA)_C > 0; since AT)‘J =0, we
have T AX = 0. contradiction.
Now, suppose system (I) no solution. Then the system (I') Ax >
0, eT Ax = 1 no solution either. System (I') is equivalent to

AR

Hence, by Farkas’ lemma, there exists a Z = (i7, ) € R™*! such that

A
eTA

-A

—eTA T,s5) >0.

,x

AT ATe i 0
AT —ATe| M R
j‘, ’%e[t <lr>ol|

or equivalently, AT (i +7e) =0, > 0,7 > 0. Now, let § = i1 + fe €
R™. Clearly, we have AT)'/ = 0. Moreover, since it > 0 and 7 > 0, we
have § > fe > 0.

6. Let A € R"™*" and ¢ € R be given. Show that {x € R : Ax <
0} S {xeR":cTx <0}ifandonlyif ATy = c for some y > 0.
A: By Farkas’ lemma, exactly one of the following systems is solvable:
MATy=c,y20. IDAx <0, c'x>0
It follows that (I) is solvable if and only if ¢Tx < 0 whenever x € R
satisfies Ax < 0.

7. Farkas: D Ax <0, x >0. (IDATy>0,y>0,y#0.
A:T)Ax+s=—e, (x,5) 2 0.

8. Let A € R ™ and ¢ € R be given. Define C = {x € R" : Ax >
0}. Suppose that 0 is a basic feasible solution of C. Consider the follow-
ing LP: v¥ = minyec ¢ x. Show that v* = —co if and only if there
existsad € C\ {0} such that there are n — 1 linearly independent active
constraints at d and ¢ T d < 0.

A: Suppose that there exists a d € C \ {0} satisfying ¢ Td < 0. Then,
we have Ad € C for any A > 0, which implies that v* = —oco.

Conversely, suppose that v* = —co. Let A € R"*" be the matrix
whose i-th row is a'T, where i = 1, ..., m. By scaling if necessary, there

exists an ¥ € C such that ¢ T X = —1. This implies that the polyhedron
P={xeR": aiTx >0fori=1,...,m,c'x =—1} is non-empty.
Since 0 is a basic feasible solution of C, there exist n vectors in the col-
lection {aj, -.., amm } that are linearly independent. Hence, by Theorem
3, P has at least one extreme point, say d € R’. Note that there are n
linearly independent active constraints at . Moreover, since cTd=-1,
we have d # 0. Thus, there are n — 1 linearly independent constraints of
the form alTx > 0 that are active at d.
9. A primal-dual pair of LPs in standard forms such that neither is feasible.

1 1 1 -1

o A S ¢ M
Let P € R™M pe a stochastic matrix; i.e., Pij >
{l,...,n} and Pe = e. Show the system PTx =x, x >0, x #£ 0
is solvable.
A: Consider the LP: max e"x s.t. (I -P)Tx=0x>0.
Dual: min 0 s.t. (P —I)y > e. We claim that (D) is infeasible. In-
deed, since P is a stochastic matrix, each entry of the vector Py is a convex
combination of the entries of y. In particular, we have [Py]; < Ymax
fori = 1, ..., n. However, one of the entries of y + e equals ymax + 1.
This yields the desired contradiction.
It follows (P) is either infeasible or unbounded. However, x = 0 is
feasible for (P). Hence, we conclude (P) is unbounded, which implies
PTx=x, x>0, x #0is solvable.
11. max ¢'x s.t. Ax < b,x > 0. Dual:
-c,y <0
Equivalent to: min b7y s.t. ATy > ¢,y > 0.
min ¢Tx s.t. Ax > ¢,x > 0. Show if ¥ € R” satisfies AX = ¢
and X > 0. From 6, dual given by: max cTy s.t. Ay < ¢,y > 0.
When AX = ¢ and X > 0, X is feasible for both P and D, and P and D
have the same value. By strong duality, X is optimal.
Reformulate: min ||Ax — bll% s.t. [Ix]lo £ K, x € R™.
givenaconstant M > O such that || x*||g < M for some optimal solution
x*. A:min [|Ax - bll% st X vi < K, xp < Myjfori =
1,...,n,

—Myjfori=1,...,n, yj € {0, 1} fori=1,..
Let P C R” be a non-empty polyhedron. Suppose for i N, we
either have constraint x; > 0 or constraint x; < 0 in description of P.
Does P have at least 1 vertex? A: Yes. By assumption, the polyhedron P

xi >0 foriel,

X <0 forigl, where I C {1, ...,
claim that P does not contain a line, which would then imply the desired
conclusion. Suppose that this is not the case. Then, there exist xo € P
and d # Osuchthatxg+ @d € Pforall@ € R. Letj € {1, ...,n} be
suchthatdj # 0. If j € I, then (xp + @d)j < Oas @ — —oo, which
contradicts’ the hypothesis that (xq + ad)J > Oforall @ € R. Also a
similar contradiction for the case where j ¢ I.

> 0 fori,j €

min -bTy s.t. ATy <

We are

n.

contains the constraints n}. We

5 Conic Linear Programming
5.1 Introduction
The relation > defines a partial order on vectors in R i.e., it satisfies

(a) (Reflexivity) u > u forallu € R";

(b) (Anti-Symmetry) u > v and v > wimply u = v forallu, v € R";

(c) (Transitivity) u > vand v > wimply u > w forallu, v,w € R™.
The relation > is compatible with linear operations; i.e., it satisfies

(d) (Homogeneity) for any u, v € R and @ > 0, if u > v, then au > av;

(e) (Additivity) for any u,v,w,z € R"™, ifu > v and w > z, then

u+w2v+z.

Every good relation > on E induces a pointed cone K = {u € E : u = 0}
with0 € K:
1. K is non-empty and closed under addition; i.e., u+v € K Yu,v € K.
2. Kisacone;ie., foranyu € K and @ > 0, we have ou € K.
3. K ispointed;ie. ifu € K and —u € K, thenu = 0.
The first property follows from (a) (which implies that 0 € K) and (e); the
second follows from (d). The third: observe u = u by (a) with —u = 0 and
(e) implies that O = w. Since u = 0, it follows from (b) that u = 0.
Note thata pointed cone K is automatically convex. To prove this, letu, v € K
and @ € (0, 1). Then, since K is a cone, we have au, (1 — a)v € K.
Since K is closed under addition, we conclude that au + (1 — @)v € K
The converse is also true; i.e., given an arbitrary pointed cone K C E with
0 € K, we can define a good relationon E. u g v &= u—-v € K.By
definition, we have u =g viffu — v =g 0. Now, we claim = g is good:
(a) (Reflexivity) Since 0 € K, we see that forany u € E,wehaveu —u € K;
ie,u =g U. (b) (Anti-Symmetry) If u — v € K and v — u € K, then
by the pointedness of K, we have u — v = 0; i.e,, u = v. (c) (Tran-
sitivity) If u — v € K and v — w € K, then by the addition property,
we have u —w € Kiie,u =g w. (d) (Homogeneity) Suppose that
u—v € K and @ > 0. By the conic property, we have @ (u — v) € K,

which implies that @u =g @v. The case where @ = 0 trivially follows from
reflexivity. (e) (Additivity) Suppose thatu —v € K andw —z € K. By
the addition property, we have u + w — (v+z) € K;ie,u+w =g v+z.
Example 1 (Representative Closed Pointed Cones)

1. Non-Negative Orthant. R}! = {x € R" : x > 0}. (a pointed cone in
R™ equipped with the usual inner product)

Good relation: Foru,v € R, u > viffu; > v; Vi=1,...,n.

2. Lorentz Cone (SOC). Q! = {(1,x) e RXR" : ¢ > ||x|]2}.

(a pointed cone in R7+! equipped with the usual inner product)

Good relation: For (s,u), (f,v) € R xR", (s,u) Zqn+l (z,v) iff
s—t > |lu-v|s.

Rok: tlosure Under oddition 2.3. n=2
t
ey e O™ o,
(Soyrea SN,

o R ANyl 3 Tyl ® Ckas xegd e @

Siare Moguality

3. Positive Semideﬁnite Cone. S7' = {X € S":
= {X €5t dyin(X) 2 0}

(a pointed cone in S™ of n X n symmetric matrices equipped with Frobenius
inner product X - Y = tr(X'Y) = r(XY) = 2?21 Z’;:l XijYij)

(note that S™ can be identified with R”(77+1)/2),

Good relation: positive semidefinite ordering: For X,Y € S™, we have
X = Y iff X — Y is positive semidefinite (denoted by X — Y > 0).

4. Zero Cone. K = {0}.

All cones in Example 1 are closed and have non-empty interiors, consequences:
First, if {u’ }, {v'} are sequences in E such that

usztorl_IZ u—»ueEv—»vEEthcnuka.
Second, if the pointed cone K has a non-empty interior, then define a strict
relation > viau »g v & u—v € int(K).

Proposition 1. Let Ey, ..., E;, be finite-dimensional Euclidean spaces
and K; C E; be closed pointed cones with non-empty interiors, where
i=1,...,n. Then, the set

K =K X..xKn ={(x1,...,xn) € E{X...XEp
is a closed pointed cone with non-empty interior.

uT Xu > OVu € R}

5.2 Conic Linear Programming
Let E be a finite-dimensional Euclidean
inner product e and a good
standard form Conic Linear Progr

space equipped with an
relation  =. we define the
(CLP) problem as follows:
,m, x =g 0 (P).
{weE|xew>0Vx € K}.

v;‘, =infcex
Define the dual cone of the cone K as K* =
The dual of (P) can be given by:
vi=supb'y stc-3X" yia; €K* yeR™ (D)or
vy = suphTy s.t X yiaits=c, y €ER™, s =gx 0 (D).
Proposition 2 Let K C E be a non-empty set. Then, the following hold:
a) The set K™ is a closed convex cone, regardless of what K (# 0) is.
b) If K is a closed convex cone, then so is K*. Moreover, (K*)* = K.
¢) If K has a non-empty interior, then K* is pointed.
d) If K is a closed pointed cone, then K* has a non-empty interior.
Proof (b) It is clear from the definition that K € (K™)*.
To establish the converse, let v € (K™)* be arbitrary. If v ¢ K, then by
the separation theorem, Iy € R" s.t. infxeg ¥ ' x > y ' v. We claim that
0* = infycg y' x = 0: Clearly, we have 8* < 0 since 0 € K. Now, if
0* < 0, then Ix’ € K s.t. 0 > yTX’ > yTv. However, since ax’ € K
for all @ > 0, we see that @y’ x” > yTv forall @ > 1, which is impos-
sible. Thus, the claim is established. In particular, this shows that y € K™,
However, we then have the inequality 0 > yT v, which contradicts the fact
that v € (K*)*. Hence, we conclude that v € K.
(c) Suppose that K* is not pointed. Then, 3w € K* st. w # 0 and
x ew =0 forall x € K. This implies that K is a subset of the hyperplane
H(w,0) = {x € E: w ex =0}, which shows that int(K ) = 0
(d) Suppose that int(K*) = 0. Then, there exists a hyperplane H (s,0) =
{w e E:soew=0}withs # 0st. K* € H(s,0). Since K
is a closed convex cone by assumption, using the result in (b), we compute
K=(K")"={xeE:xew>0forallw € K*}
D{xeE:xew>0forallw € H(s,0)} = {As:
This shows that K is not pointed. [J
Corollary 1 Let K C E be a closed pointed cone with non-empty interior.
Then, so is the dual cone K* C E.
Proposition 3 Let Ej, ..., E, be finite-dimensional Euclidean spaces
equipped with the inner products ey, ..., e, respectively. Let E =
E| X ... X Ej, and define the inner product @ on E by
u-v:E Ly ui ®vi whereu;,v; € Ej, fori=1,...,n.
Suppose lhat K; € E; (where i = 1, ..., n) are closed pointed cones with
non-empty interiors and K = K{ X ... X Ky. Then, the dual cone K* is
K*=K ;‘ X ... X K}, and is a closed pointed cone with non-empty interior.
Observation In (D), the objective function is linear, and the map R"* > vy
c- Z:Zl a;y; € E is affine:
M(ay+(l-a)z) =aM(y)+ (1l - a)M(z).
Observation (R} )* = RY}; (Qthy* = @+l (84)* = Sy
Proof (1) On one hand, we have R} C (R’?)* because yTx > 0ifx,y > 0.
On the other hand, suppose that y € (R})*. Then, we have xTy > 0 for
all x € R!. In particular, we have e;ry =y 20fori=1,...,
e; € R™ is the i-th standard basis vector. This shows that y € R/, as desired.
2) (O™ = {(s,y) e RXR™ :st+x"y >0,V(r,x) € Q"*1}.
Prove Q"+ ¢ (Q"*1)*: Suppose (s,y) € Q" ie.s > [[¥]l2- Then,
Y(t,x) e Q" st > IIxll2lv]la = =xTy (by Cauchy-Schwarz). This
implies (s, y) € (Q"™*1)*. Thus, 0"*! c (Q"*1)*.
Prove (Q"*1)* ¢ Q"*!. Suppose (s,y) € (Q™*1)*. Since (1,0) €
0" wehaves > 0. If y = 0, then automatically we have (s, y) € Q"*1.
F ¢ Sy n+l o N\T C sy

Ify # 0, (3,7W) e Q = 0 < (s,y) (3,7W)
52 = s|lylla. If s > 0, this is equivalent to s > [|y||2. i.e. (s, y) € Q"*L.
Ifs =0 (s,y) € (Q") = xTy >0(Vx e R") = y=0=
(s.y) = (0,0) € Q"1
(3) (HW) By definition, (S?*)* = {Y € $" : X > Oforall X € ST}.
Suppose thatY € Si'. LetY = UZUT be its spectral decomposition. Then,
forany X € S'J, we have UT XU € Sf and hence

Y = (UTXU)eX = o (UTXU)ii%i; > 0.Itfollows Y € (Si)*.
Conversely, suppose that Y € (S%)*. Let Y = USUT be its spectral
decomposition. Since X; = Ue,-e;.rU € Sitfori=1,..,
0 < X;eY =X fori=1,...,n. This shows that all the eigenvalues of ¥’
are non-negative, which implies that ¥ € S%, as desired.[]
By Corollary 1, if K is a closed pointed cone with non-empty interior, then so
is K*. In this case, (P) and (D) are of the same nature: both optimizing a linear
function over a set defined by linear equality constraints and a conic constraint
that is associated with a closed pointed cone with non-empty interior.
Example 2 (Representative CLP Problems)

s.t.ajex=bjfori=1,...

A €R}.

n, where

n, we have

tx; e Kjfori=1,

1. Linear Programming (LP). By taking E = R, K = R}, and
wev=u'vfor u,v € E, Problem (P) becomes
inf ¢Tx s.t.a;rx:bi fori=1,...,m, x € R},

* = (R})* =R} Problem (D) becomes
sup b1y stziylal s=c, yeR", s
which are LP pnmal and dual forms.
2. Second-Order Cone Programming (SOCP) Let E = R K = Q"“,
anduev =ulvfor u, v € E. Then, Problem (P) becomes
inf ¢Tx s.t. u;rx =bjfori=1,....,m, x € Q"“, (SOCP)
which is an SOCP in standard primal form.
(Q"*1)* = @"*! Thus, Problem (D) becomes
supbTy st Y™ iy yiai+s=c, yeR™, s e Q"]
which is an SOCP 1n standard dual form.
Explicitly: Let a; = (uj, @ 1,...,ain) € R and ¢ = (v,d) €
R with d € R™. Then, we have Z;':'] yiaj =

A € R js the matrix whose i-th row contains the entries i fse--

e RY?

+

(SOCD)

(uTy,ATy), where
sdin.

It follows that the constraint s = ¢ — Z".Zl yia; € Q" is equivalent to

(v-uTy,d-ATy) e 0" ic,v-uTy > |ld=- ATyl

which implies Problem (SOCP) takes the form

sup bTy st.(v-uTy,d-ATy) e Q™. (socD’)

In other words, the problem of optimizing a linear function subject to the
constraint that the image of an affine map belongs to a SOC is an SOCP.

—a;r— arx
Note: Matrix form: A= | ... [, Ax= L (Ax); = a] x;
—a, - ayx
i yiap + ...+ Yymami
ATy:[ul,,..,um] [ :[ :Z;’;]y,-ui,
ym Yidin t .-+ Ymdmn

A n extension of Problem (SOCD) is to allow multiple SOC constraints; i.e.,
sup b1y

st(}v,—(u’)*y d/ - (AN)Ty )le p (6
Wheteul € R,y vi €R, A e R™M jandd/ e R fori =1, ..., p.
This can also be viewed as an SOCP, as it can be put into the form

sup by

forj=1,.

- n +] np+l
stzllylal+s—c yeRm,ste XQPP .
Here, ¢ = (L s CP), 5 = (3 s .,Ap),and a; = (“1!' af’) are
. . i i i+l
vectors in ]R"l+1 xR with o = (vj,dl) e Rt
anda —(u a’ o al )ER"j+l
il inj

Using (6), it is immediate that the class of SOCPs includes the class of LPs as
aspecial case: the standard form LP can be formulated as the following SOCP:
inf ¢Tx s.t.]|Ax = b, <0, [[0x -0, < e;rxfori =1,..,n

3. Semidefinite Programming (SDP) By taking E = S™, K = ST},

XeY =tr(XTY) for X,Y € E, Problem (P) becomes

inf CeX s.t.AjeX=b;fori=1,....,m, X €S}, (SDP)
(S3)* = SI, Problem (D) becomes

sup bTy st I yiAj+S=C, y eR™,;S € SI. (SDD)

Theorem 1 (CLP Weak Duality) Let X € K be feasible for (P) and
(¥,5) € R™ x K* be feasible for (D). Then, by < c o X.

Farkas-type lemma for the following conic linear systems: (I) a; e x =
bjfori=1,...,m, x € K.

am -3 viai € K*, bTy>0.

where E is a finite-dimensional Euclidean space equipped with inner product
e, K C E is aclosed pointed cone with non-empty interior.

It is straightforward to show that (I) and (II) cannot both have solutions.
Proof: Suppose that X € E isasolutionto (I)and y € R isasolution to (II).

Then, we have 0 < b y = Z:’l] yi(ajex) =— (— l”:'l y,~a,~) ex <0,
which is a contradiction. [
Example 3 (“Failure” of the Conic Farkas Lemma) Let E = S2 and

K = S2. Define A} = [é g], Ay = [(1) (1)] b= [g]
Consider the following systems: (I) AjeX =b|, ApeX=by, X € S%.
D - (y1Aj +y2A2) € 57, 6Ty > 0.

Observe that () is equivalentto X1 =0, X|p =1, X € Sz

Y1 Y2

and (II) is equivalent to — ¥ 0 € Si, y3 > 0, both insolvable.

‘Why a Farkas-type lemma need not hold for the systems (I) and (II):

(1) In the proof of Farkas’ lemma for linear systems, we show that the set
S = {Ax € R™ : x € R} is closed and convex, so that we can apply the
separation theorem to {b} and S if system (A) is insolvable.

(2) For a general closed pointed cone K, the set S” = {(aj e x,...,am ®
x) € R™ : x € K} need not be closed. In the setting of Example 3, we
have S = {(A; ® X, Ay ¢ X) : X € S2} = {(X11,2X]2) : X € S2}.
Since X € SE iff all of its principal minors are non-negative,

S’ ={(0,0)}U{(x,y): x>0,y eR} C R2, clearly not closed.
Note: We used the fact: Principal minor characterization:

LIfX =0,thenX;; >0Vi;2. fX 20,X;; =0= X;5=0V;

b

3.5:[2 =0 & a,c>0;det(S) >0

Theorem 2 (Conic Farkas’ Lemma) Let E be a finite-dimensional Euclidean
space equipped with an inner product e, K C E be a closed pointed cone with
non-empty interior, and @, ..., am € E and b € R be given vectors.
Suppose that the Slater condition holds; i.e., there exists a y € R”" such that
- Z:':ll $ia; € int(K*). Note that  need not satisfy b' y > 0. Then,
exactly one of the systems (I) and (II) has a solution.

Theorem 3 (CLP Strong Duality)

(a) Suppose that (P) is bounded below and strictly feasible ie., there exists a
feasible solution X to (P) such that X € int(K). Then, vp = v . Moreover,

there exists a feasible solution (¥, §) to (D) such that b § = V

the common optimal value is attained by some dual feasible wlullon
(b) Suppose that (D) is bounded above and strictly feasible; i.e., there exists
a feasible solution (¥, §) to (D) such that § = ¢ — Z:ﬂl yia; € int(K*).
Then, v
cex = v
feasible soluuon

(c) Suppose that either (P) or (D) is bounded and strictly feasible. Then, given
afeasible solution X to (P) and a feasible solution (¥, §) to (D), the following
are equivalent:

e Xand (¥, 5) are optimal for (P) and (D), respectively.

o The duality gap is zero; ie.,c X = b 3.

e Complementary slackness: i.., X 5= X ® (¢ — Z# yia;) =0
Compare with LP: whenever one of (P) or (D) is bounded and feasible, then
(i) the optimal value v;', of (P) and the optimal value v; of (D) are equal, and
(ii) there exists a primal feasible solution X and a dual feasible solution (¥, §)

Vd’

= Vd Moreover, there exists a feasible solution X to (P) such that

=v* e i.e., the common optimal value is attained by some primal




such that ¢ T X = vp =vy = bT3.

Primal and dual attainment of the common optimal value is implied by the
boundedness and feasibility of either the primal or the dual LP problem.
Example 4 (Pathologies in Conic Duality)

1. Both the primal problem (P) and the dual problem (D) are both bounded
and feasible, but the duality gap is non-zero. Consider the SDP

0 X1 0
inf Xjp s.t. X=|[X;2 Xp; 0 |esi (0)
0 0 1+ X,
It is a routine exercise to show that the dual of (10) is given by
1+y, A%
-y T4 _72
sup yg4 s.t.S= |14 0 7y73 ES?_‘ (11)
Y.
% -3 -

Since X € Si, we must have X1 = 0, which implies that the optimal value
of (10) is 0. Similarly, since S € Si, we must have (1 + y4)/2 = 0, or
equivalently, y4 = —1. Hence, the optimal value of (11) is -1.

X rank at most 2, violates Slater (need pd: full rank), but has attainment.

2. The primal problem (P) is bounded below and strictly feasible, but the
optimal value is not attained by any primal feasible solution (attained by (D)).
Consider the SOCP: inf x| s.t. (x] +x2,1,x] — x) € Q3. (12)
Note that the constraint in (12) is equivalent to x1 +x3 > V1 + (x] — x9)2,
which in turn is equivalent to 4x1x > 1, x;+x2 >0. (13)

By (13), we see that the optimal value of (12) is bounded below by 0. More-
over, for x; = xp = 1, we have (2,1,0) € inl(Q3), which implies
that (12) is strictly feasible. Now, by setting x; = 1/(4x) and letting
Xp — oo, we see that the optimal value of (12) is 0. However, such an
optimal value is not attained by any feasible solution to (12). Dual of (12):
sup —yp s.Lyi+y3=1, v —y3=0, (1,32, ¥3) € Q°. (14)
The feasible set of (14) is {(1/2,0,1/2)}, which shows that the optimal
value of (14) is 0. However, it is clear that (14) is not strictly feasible i.e.,
violates Slater condition, that’s why not attained by (P).

5.3 Some Applications of Conic Linear Programming

5.3.1 Robust Linear Programming

Consider the LPmin &' x s.t. Ax <b (1),

where A € R"M*1 [ e R™M and & € R are given. The data of the above

LP A and b are uncertain. In the robust optimization setting, we assume the
uncertain data lie in some given uncertainty set 2. Rewrite (1) as:

min ¢Tz st Az <0, z,41 = -1, (2)

where A = [A b] € RM*(+D) ¢ = (£,0) € R™! and z € R**!.
Now, suppose that each row a; € Rn+l
region U; whose center u; € R+ s given (here, i = 1, ..
a; € U; = {x eR™!  x =u; + Biv, |Iv]lp < 1} fori=1,...,
where a; is the i-th row of A, u; € R™*1 s the center of the ellipsoid U;,
and B; is some (n+ 1) X (n+ 1) positive semidefinite matrix. Then, (2) is:
min ¢’z st. Az <O0Va; € Ui, i=1,....m, z,01 =-1. (3)
We claim (3) is equivalent to an SOCP problem: observe that a;rz < Oforall

a; € U; iff0 > maxveR’”l:\lvl\zsl{(ui+BiV)TZ} =ul z+||Bizll2,

of the matrix A lies in an ellipsoidal
., m).
m,

wherei =1, ...
min ¢z

, m. Hence, we conclude that (3) is equivalent to
st |Bizlly < —ulzfori=1,....m, zpp1 = -1

5.3.2 Chance Constrained Linear Programming

min ¢'x st.a'x<b, xeP, (4

where a,c € R™, b € Rare given, and P C R" is a given polyhedron.
Suppose P is deterministic, but data a, b are randomly affinely perturbed;
ie,a=a"+ 25:1 ea’, b=b"+ 25:1 € bi,

where aO, al ,. al € R" and bo, bl ey bl € R are given, and
€], ..., € are i.i.d. mean zero r.v.s supported on [—1, 1]. Then, for any
given tolerance parameter § € (0, 1), we can formulate the following:

min ¢Tx s.t. Pr(a”x > b) < 6(+), x e P. (5)

In other words, a solution X € P is feasible for (5) if it only violates the
constraint @ x < b with probability at most &. The constraint () is known
as a chance constraint. Note that when & = 0, (5) reduces to a robust lin-
ear optimization problem. Moreover, if X € R’ is feasible for (5) at some
tolerance level & > 0, then it is also feasible for (5) at any 6 > .

Indeed, even when the distributions of €], . . ., € are very simple, the feasible
set defined by the chance constraint (1) can be non-convex. One way to tackle
this problem is to replace the chance constraint by its safe tractable approxi-
mation; i.e., a system of deterministic constraints H such that (i) X € R is
feasible for (1) whenever it is feasible for H (safe approximation), and (ii) the
constraints in H are efficiently computable (tractability).

‘We first observe that () is equivalent to the following system of constraints:

Pr (yo +XL &y > 0) <5, (6)

vi=(a")Tx—b; fori=0,1,...,1. (7)

Since €1, . .., € arei.i.d. mean zero random variables supportedon [—1, 1],
by Hoeftding’s inequality, we have

+2
Pr(Zl | €iYi >t) < exp T)foranyt > 0.

It follows that when —yg > 1[(21n 5) Zl 1 yl . (8) we have

y2
Pr (y() + Zf,zl €Yyi > 0) < exp (—ﬁ <6
i=1-1
In other words, (8) is a sufficient condition for (6) to hold. The upshot of (8) is
that it is a SOC constraint. Hence, we conclude constraints (7) and (8) together
serve as a safe tractable approximation of the chance constraint ().
Constraint (8) is equivalent to the following robust constraint:
dTy < Oforalld € U, where U is the ellipsoidal uncertainty set given by
U={xe R x = +Bv, ||v]s < 1},and B € R XA 4
0 o7
0 1
In other words, we are using the following robust optimization problem

min ¢Tx s.t. Zf.:o d; ((ui)Tx - b,—) <Oforalld € U, x € P

as a safe tractable approximation of the problem (5).

givenby B = /21n %

5.3.3 Quadratically Constrained Quadratic Optimization

min xTCx s.t.xTAjx > b;fori=1,...,m, (9)

where C, Ay, ..., Ay € S™ are given. We first observe for any C € S™,
xTCx =t(xTCx) =tr(CxxT) = C e xx". Hence, (9) is equivalent to
min C e xx' s.t. Aje xxT > b; fori=1,...,m.

Now, using the spectral theorem for symmetric matrices, one can verify that
X=xx" & X = 0, rank(X) < 1.

Reason: () Yu € R :u' Xu=u" xx"u = HxTuH% > 0.

(2) Every row of X is multiple of every other row.

It follows that problem (9) is equivalent to the following rank-constrained SDP:
min C ¢ X

s.t. Aj e X > bifori=1,...

,m, X =0, rank(X) < 1. (10)

It reveals where the difficulty of the problem lies; namely, in the non-convex
constraint rank (X) < 1. By dropping this constraint, we obtain the following
semidefinite relaxation of problem (9):

min CeX st AjeX>b;fori=1,....,m, X =0. (11)

Problem (11) is an SDP and can be efficiently solved. However, an optimal
solution X* to problem (11) may not be feasible for problem (9).

5.3.4 An Approximation Algorithm for Maximum Cut in Graphs
Suppose that we are given a simple undirected graph G = (V, E) and a
function w : E — R that assigns to each edge ¢ € E anon-negative weight
We . The Maximum Cut Problem (Max-Cur) is that of finding a set S € V
of vertices such that the total weight of the edges in the cut (S, V' \ S); i.e.,
sum of the weights of the edges with one endpoint in S and the otherin V'\ S,
is maximized. By setting w;j = 0if (7, j) ¢ E, we may denote the weight
ofacut (S,V\S) byw(S,V\S) = Zjes, jev\s Wij, (15)andour
goal is to choose a set S € V such that the quantity in (15) is maximized.
Let (G, w) be a given instance of the Max-Cut problem, with n = |V/|.
Then, we can formulate the problem as an integer quadratic program: v* =
max % 2(i.j)eE W,ij(.l - Xixj) st Xi2 =1lfori = !, ...,n. (16)
le x; indicates which side of the cut vertex i belongs to. Note
s i and j belong to the same side of a cut, then x; = Xj, and
hence its contribution to the objective function in (16) is zero. Otherwise, its
contribution to the objective function is w;; (1 — (=1))/2 = w;;.

Iflet X = xx' € R then problem (16) arrive at following relaxation:
1
Veap =max 3 i, e wij (1= Xij)

s.t. diag(X) = e, X = 0. (18). Note that (18) is an SDP. V:d > v
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5.4 Example Problems
1. Let A € S™ be given. Consider the following QCQP:
min xT Ax s.t. x? =lfori=1,...,n
(a) Derive the semidefinite relaxation of Problem.
(b) Write down the dual of the semidefinite relaxation. Does the primal-
dual pair of SDPs you obtained have zero duality gap?
(c) The Lagrangian dual is sup,,,cgn 6 (w), where
6(w) =inf,cgn {.XTAX +X0 wi(l- xl.z)
Find expression for € (w). Hence, or otherwise, show that Lagrangian
dual is equivalent to the dual of the semidefinite relaxation found in (b).
A: (a) The semidefinite relaxation of the given QCQP is given by:
inf AeX s.t. X;;=1fori=1,...,n, X=0
(b) The dual of (SDR) is givenby:  sup eTy s.t. A—Diag(y) = 0.
Note that X = I is strictly feasible for (SDR). It follows from the CLP
strong duality theorem that the duality gap between (SDR) and (SDD) is
Zero.
(©) O(w) =eTw +infepn {xT (A- Diag(w))x} .
For any given w € R", we claim that
. X 0 if A — Diag(w) = 0,
nfycgn {xT(A- Dlag(w))x} = {700 otherwise.g( )
Indeed, if A — Diag(w) ¥ 0, then A, (A — Diag(w)) < 0.
Let u € R™ be the unit eigenvector corresponding to the small-
est eigenvalue of A — Diag(w). Then, as @ T +oo, we have
(au)T (A - Diag(w))(au) = @?Amin(A = Diag(w)) — —oo,
implies inf \ cpn {XT (A- Diag(w))x} = —00
On the other hand, if A — Diag(w) = 0, then x'(A —
Diag(w))x > 0 for any x € R™. In particular, we have
inf cgn {xT (A - Diag(w))x} =

Consequently, the Lagrangian dual is & sup eTw st A -
Diag(w) = 0.

2. Consider the following SDP: inf X; s.t. [Xl” x122] = 0.
A:(@)inf CeX s.t. AeX =2, X =0, where
U R (R
Hence, the dual (D) is given by: sup 2y s.t.S = Jy 70y = 0.
(b) A necessary condition for S = 0 is det(S) = 0; ie. y? < 0.

Thus, y = 0 is the only feasible solution to (D), which implies the optimal
value of (D) (and hence of (P)) is 0. The dual optimal value is attained
by y = 0. On the other hand, the primal optimal value is not attained.
Indeed, the feasible set of (P) is given by {X € 52 X1 20, X >

1
0, X11Xpp > 1}, which implies X(€) = [T e_l] is feasible for

(P) for any € > 0. However, any point X € S2 with X171 = 0 is not
feasible for (P).
21Q5.

min Lx

stdlx < i=1,..
x€eRM

, M,
xi20,i=1,...,n.

¢ € R™ is a positive vector, d; € R™ and f; € R"™ are non-negative

vectors.

(a) Write down the KKT conditions for the above problem.

(b) Suppose Zp 1 [Ifjllo < p < n, where || fjlo counts the number of

non-zero elemenls in the vector f "j- Show that there must exist an optimal

solution x* s.t. [[x*[lp < p.

A: @ DF:c + X7 wid; + 25.’:1

ueRM, veR}

CS:v; (le;? - ¢)=0Vi=1,...,

(b) KKT necessary by (3), sufficient.

By the KKT condition, we know Z;”:l

wjfj+ Xz vi(—er) =0

m; upXp =0Vk=1,...,n

wjfj=u- Z:’ll vid; — c.

< p < n. Since u € R},
vidi

Then ’“_Z:'Z[ vidi — ¢ )
d; > 0,Vi,c > 0,
u—Z;’il vid; —c|0 >

ros of u will become non-zero ). Thus ||u||g > 7 — p. Then by the KKT
condition that ug x; =0, k = 1, ..., n, we know that [Ix*llo < p.

then as ¢ + Z:il is positive, then

n — |lu||o(this is because at least the ze-

3. 19Q4. Show (P) has a unique optimal solution x™ that is non-degenerate,
then (D) also has a unique optimal solution y™ that is non-degenerate.
A: non-degenerate = X* has positive feasible variables (exactly n — m
Zeros).
WLOG, assume X* = (X[, ..., Xm, Xp4]s - - -» Xn ). It follows that
rows of A are independent by definition of non-degenerate. By Comple-
mentary Slackness Theorem,
[Ci - (ATy)i] =0fori=1,...,m; [CJ
m+1,...,n

.
LetA = [Ap  An]. ATy = [:Fy

ible, y is uniquely determined by (A )71cB ¥ has exactly m linearly

- (ATy)j] > Ofor j =

N Since Apg is invert-

ijXZgj, j=1 ..,

independent active constraints (from

4. X ={(t,x1,x) e RXxXRxXR:xp,x > 0,7 < xX1x3} SOC-
representable.
A: Although 7 is not necessarily non-negative, observe that r <
Vi © 11, 0<st<yxime <7, 120, 72 <
(x1+x2)2 _ (xlfxz)2
)
1 0o o0)\(7
o t<1t, 720, (0 1 71) X1 S%
2 2/ \xa/ll,
5. The goal is to prove a theorem of alternatives for linear matrix inequal-

ity systems. Let Aq, ..., Ay € S™ and b € R™ be given. Suppose

C={(AjeX,....,A; ®X) : X = 0} C R is closed. Show that
exactly one of the following systems has a solution:
AjeX=b; fori=1,....m,
® { X = 0.
A; =0,
w E-Fl y’

A: We first show systems (I) and (II) cannot simultaneously have so-
lutions. Suppose not the case. Then, exist a matrix X € S™ and a
vector y € R satisfying (I) and (II), respectively. This implies that

0< (21":[1 y,—Ai) X (since X = 0and 2 iAi = 0)
=X Si(A; e X) = 5 5ib; = -1

diction.

Now, suppose that system (I) does not have a solution. Then, we have
b ¢ C. Clearly, the set C is non-empty and convex, and by assumption
it is closed as well. Hence, by Separation theorem, there exists a vector
s € R"™ such thatsup,cc s'z < s b.

(since b7y = —1) contra-

We claim sup,cc sTz = 0. Indeed, since 0 € C, we have
sup,cc s’z > 0. Suppose sup_ecc s'z > 0. Then, there ex-
ists a matrix X’ > 0 s.t. X si(Aj e X’) > 0. In particular, for
any @ > 0, we have @X’ = 0 and 0 < sz si(Aj e X') =
Zl 1 si(Aje (a@X’)) < supyec s'z < s'b. However, since s T b
is a constant, the above inequality cannot hold for all values of . This
contradiction shows that Sup-cc 5Tz < 0, and hence the claim is estab-
lished. As a corollary of the claim, we have sTh > 0. Thus, the vector
$ = —s/sTbh € R™ is well defined. It is immediate that by = —1.
Moreover, the claim implies (Z;':‘I j/iAi)-X > 0 for all X = 0, which,
by self-duality of S¥, is equivalent to Z 2 yiA; = 0. This shows y is
a solution to (II).

6 Optimality Conditions and Lagrangian Duality

6.1 Introduction

Consider a univariate, twice continuously differentiable function f : R — R.

afe| g
dx

In ;ddmon

If X € R is a local minimum of f, then we must have

this is a necessary condition for X to be a local minimum.
d2f(x)

dx? —x
Theorem 1 (Taylor’s Theorem) Let a, b € R be such that a < b and let
n > 1 be an integer. Suppose that the function f : [a, b] — R satisfies:

F(=1 s continuous on [a, b],

2. f<”) () exists forevery ¢ € (a, b).

> 0 is a sufficient condition for X to be a local minimum.

f(J) (,1)

Leta < t] <ty < b, and define P(t) = Z" 1 (t-1)4.

(0) (tp — 1)

Then, 3ty € [11, 1] such that f(7p) = P(p) +
6.2 Unconstrained Optimization Problems
Proposition 1 Suppose that f : R — R is continuously differentiable at
% € R™. If there existsad € R suchthat V£ (%) " d < 0, then there exists
an g > 0 such that f(X + @d) < f(X) forall @ € (0, ag). In other
words, d is a descent direction of f at X.
Proof Since V f is continuous at ¥ € R and Vf(X)Td < 0, there ex-
ists an @y > O such that Vf (¥ + ad)Td < 0 for all @ € [0, ap).
Now, consider the function f : R — R defined by f(a@) = f(X + ad).
‘”h‘” = V(% + ad)Td. Thus, by The-
orem 1, for any @ € (0, ), there exists a fy € [0, ap) such that
f(x+ad) = f(a) = f0)+aVf(x+19d)Td < f(0) = f(X),
as desired.

Corollary 1 (First Order Necessary Condition for Unconstrained Op-
timization) Suppose that f : R — R is continuously differentiable at
% € R™. If X is a local minimum, then we have V f (%) = 0. In particular,
Rve have {d € R" : Vf(%)Td <0} =0

Proof Suppose to the contrary that V f(x) # 0. Let d = —V f(X). Then,
we have Vf(X)Td = —||Vf(X) H% < 0. Hence, by Proposition 1, there
exists an () > O such that f (X + ad) < f(x) forall @ € (0, ), which
contradicts the fact that X is a local minimum. Thus, we have V £ (¥) = 0. J
Proposition 2 (Necessary and Sufficient for Convex Functions) Let S C R”
be an open convex set. Suppose f : R’ — R is convex on S and continuously
differentiable at X € S. Then, X is a global minimum in S iff V f(x) =0
Proof (=) by Corollary 1; (<) if V f(X) = 0, then we have V£ (%) T (x —
X) =O0forall x € S. By Handout 2 Theorem 9, f(x) > f(X) Vx € S. O
Proposition 3 Let f : R” — R be arbitrary. Then, X is a global minimum
iff 0 € 9f (X).

Proof f (%) = {s e R : f(x) > f(X)+s  (x - X)Vx € R"}, X is
a global minimum iff f(x) > f(%) = f(£) +07 (x - ¥)Vx e R. [J
Note: even if f is differentiable at X, we may not have Vf(x) € df(x) if
f is not convex at X.

Proposition 4 (Second Order Sufficient Condition for Unconstrained Op-
timization) Suppose f : R”™ — R is twice continuously differentiable at
x eR". IfVf(x)=0and sz()?) is pd, then X is a local minimum.
Proof For any d € R™ such that HdH% =1,
fa : R = Rgivenby fy (@) = f(X + ad). By the Chain Rule, we have

~ 5 x

Ya' D _gp(zsqayTa, Iale) ﬁ‘z’” =dTV2f(i+ad)d. (4)
Since sz is continuous at X € R" and sz()?) > 0, there exists an
g > 0 such that for all unit vectors d € R" and for all @ € [0, ag), we

By the Chain Rule, we have

consider the function

have sz(i +ad) > 0. Now, suppose that X is not a local minimum. Then,
there exists an X’ € R’ such that || X" — %], < g and f(X") < f(X).
Letd = (¥’ — x)/||x’ = X[l and @ = || X" — X||5. Then, by (4), Theorem
1, and the fact that V f (X) = 0, we have f(X) > f(X') = f(X + ad) =
Fala) = Fa(0) + LdTV2f(5 + 19d)d > f4(0) = f(X) for some
to € (0, ap), which is a contradiction. This completes the proof. [J




6.3 Constrained Optimization Problems

Let f,g1,--- s 8my» hi,..., hm2 : R — R be functions that are con-

tinuously differentiable on the non-empty open subset X of R’*.

inf f(x) st gi(x)<0 fori=1,...,

hj(x)=0 forj=1,..,
x € X.

Let S = {x € X : gj(x) < Ofori

1, ..., my} be the feasible region of (5).

Theorem 2 (The Fritz John Necessary Conditions) Let X € S be a local

minimum of problem (5). Then, there existu € R, v, ..., Vm, € R, and

Wi,eoos Wy € R such that

mp,
my,

)

= 1,...,m1;hj(x) = 0forj =

m) my
uvf(x) +Zvngi()?) + Z w;iVhj(%) =0
i=1 j=1

u,vi 20 fori=1,...,my,

(6)

Furthermore, in every neighborhood N of X, there exists an x” € A such that
vigi(x") > Oforalli € {1,...,m} withv; #0,and wjh;(x") >0
forall j € {1,...,my} withw; #0.ie,v;g;(X)=0Vi=1,...,m
Remarks:

(a) The last statement in Theorem 2 actually implies the complementary slack-
ness condition (i.e., v;g; (X) =0fori =1, ..., my), since if v; > 0,
then the corresponding constraint g; (x) < 0 will be violated by points
arbitrarily close to X. This implies that g; (X¥) =0

In Theorem 2, the scalar v; (resp.  wj) is usually called the
Lagrange multiplier of the corresponding constraint g; (x) < 0, where
i=1,...,my (resp. hj(x) =0, where j = 1,...,myp). Ina fashion
reminiscent to the case of LP, we may summarize the Fritz John necessary
conditions in (6) as follows: (7)

gi(X) <0 fori=1,...,my,
hj(x)=0 forj=1,...,

(U, Vs ooy Vi s W s Winy ) # 0.

(b)

(primal feasibility

my, (primal feasibility

m my
UVF(R) + Y viVgi (%) + ) wiVhi(%) =0,

i=1 J=1

(dual feasibility I)

u,v;i >0 fori=1,...,my, (dualfeasibilityII)
(U VI e s Vi s WEs oo, Winy) # 0, (dual feasibility 111
vigi(¥) =0 fori=1,...,m. (complementary sl

For any X € R, if there exist Lagrange multipliers u, {v; }lm=i SAw; }]”;21
that solve system (7), then we say that X is a Fritz John (FJ) point. An FJ
point need not be a local minimum, as the Fritz John conditions (7) are only
necessary conditions for local optimality.

Fov 5\-.“‘,1;(;{3‘ Sasider

NG

M2

moving out
of feasibility

(%)= (X)=
3.z 300=5G=0
Assumingu = 1, =V f(x) = v Vg (X) + v Vga(X); vy, vy > 0.

Idea: If X is a local minimum, then intuitively Ad st dis simultaneously a
descent direction of f at X and a feasible direction of f at X.
Example (Limttation of FInC)
At de poist x,

*0

9'7) RE =4,(x) =0 and 'k)u

i we lek BIo Vizo, VpTvyta Vesvpso,

© 9 + 09551+ 195, + 1.98,%1+ 0. UG5 + .04 (5 )

= 0 (becse 94 2-0836%) by Contiuctiod 3@<o

and omflemeitacity bds

Note: X always satisfying FINC, although maybe not the local minimum. This
is because Vg5 and Vg3 are linearly dependent.

Theorem 3 (The Karush-Kuhn-Tucker Necessary Conditions) Let X € S
be alocal minimum of problem (5). Let/ = {i € {1, ...,my} : g;j(x) =0}
be the index set for the active constraints. Suppose that X is regular; i.e., the
family {Vg; (¥)}ier U {Vh; (X)};n:zl of vectors is linearly independent
(LICQ). Then, there exist vy, ..

= Vmy € Randwyp, s Wy € R such that

Vf(x)+Zv,Vg,(x)+ZwJVh (x) =0, (DF)

i=1 J=1

vi 20 fori=1,...,m;.(DF)

a7
Furthermore, in every neighborhood N of X, 3x” € N suchthatv; g; (x") >
0foralli € {I,...,m} with v; # 0, andw,h,(x) > 0 for all
je{l,... mz}wnhw]#Ole vigi(x)=0Vi=1,...,m (CS)
We say that ¥ € R” is a KKT point if (i) X € S and (ii) there exist Lagrange

multipliers {v; }lrg s Aw; };":21 that solve system (17).

Example 1 (Failure of the KKT Conditions in the Absence of Regularity,
Importance of CQ) Consider the following problem:

min x; st (x] -2+ -D2<1, (x -2+ (xn+1)2 <1
Since there is only one feasible solution (i.e., (x|, xp) = (1, 0)), it is auto-
matically optimal. The KKT condition% are given by

X1 =
xp =1

X1 =
x2+1

v ((xl D24 (xp - D2 - 1) :o,vz((xl D24 (D2 -

1)=
vy, vy 2 0. (DF)

However, there is no solution (v{, v2) > 0 when (x1, x) = (1,0).
‘Without satisfying the CQ, KKT condition is not necessary for optimal point.
Final: If LICQ fails, there may still exist v € R satisfying the KKT con-
dition. For example, if change the above objective function as min x5, then
X =(1,0) and ¥ = (1/2,0) is a solution to the KKT conditions.

There are other regularity conditions, a more well-known one is the following:
Theorem 4 Consider problem (5), where g1, ..., &m are convex and
hy, .4.,hm2 are affine. Let ¥ € S be a local minimum and I = {i €
{1,...,m1} : gi (X) = 0}. Suppose that the Slater condition is satisfied;
i.e., there exists an x” € S such that g; (x”) < Ofori € I (Slater CQ). Then,
X satisfies the KKT conditions (17).

Proof Since hy, ..., hy, are affine, we may assume without loss that the
family {V/;(X)}; of vectors is linearly independent. Now, by Theorem
2. we have uV (%) + X0t v; Vg; (%) + z’].’?’l w;Vh;j (%) = 0(19) for
some U, Vi, ..., Vg 2 Oand wy, ..., Wmy € R, where not all of them are
zero. We claim that u > 0. Suppose that this is not the case. Then, we have

+2v; +2v = 0; (DF)

1
0

m

2 vV (%) + z_’,,"f] w;Vh; (%) = 0.(20)

Since notallof vy, ... Vg Wi - wm, are zerOA, we conclude there exists

an i’ € I with v;s > 0, for otherwise Z 1 wjiVhj (x) = 0 with some
j # 0, which contradicts the linear mdependeme of {Vh (%)}

Nuw by the Slater condition and the convexity of g1, ..., 8my . we have

0> g;(x") = gi (%)+Vg;i (%) (x'=%) = Vg; (¥) " (x"=%) fori € I.

Moreover, by the feasibility of x’ and the affinity of hp, ..., /1,,,24, we have

0=Vh; ()T (x" = x) forj=1,...,my.(22) Letd = x" — X. Since

Vis e Vi > 0,v; =0fori ¢ I, and vy > 0, by (21) and (22), we
T

have (z"j} viVei (%) + 273 w,»w,»(x)) d=vyVgi(¥)Td <0,

which contradicts (20). It tollows that u > 0 as claimed. Now, upon dividing

both sides of (19) by u, the desired result follows. O

Theorem 5 Consider problem (5), where gy, ---»8m are concave and

hy, ..., hm, are affine. Let X € S be a local minimum. Then, X satis-

fies the KKT conditions (17).

Proof By Theorem 2, uV f (x) + Zrl

for some u, vy, ..., Vmy 2 Oand wi, ..., Wm, € R,.where not all of them

are zero. We claim u > 0. Suppose this is not the case; i.e., u = 0. By the

concavity of g1, ..., gm, and affinity of /2y, ..., hmz, for any x € R, we

have g; (x) < g;(¥) +Vg; (,\7) (x = X) =1,

vngi()?)+Z:.n:2] WiVhi(%) =0

for

My,

hj(x)=h (x)+VhI(x) (xfx) forj=1,...,mp
Since v; g; (J )=0fori=1,...,myand hj(x) 70forj =1,...,my,
I vigi (0 + 215 w; h, @
<3 vigi(0) +327 w-h-(x)
+(Lf"] viVgi () + 272 wj vnj(x)) (x - %) =0.(24)
Now, since u = 0, we cllhcr have v; > 0 for some i = 1,...,m

or wj # 0 for some j = 1,...,mp. Thus, by Theorem 2, thClC ex-
Dists an x’ € R’ such that v;g; (x) > O for all i with v; > 0 and
wjhj(x) > 0 for a]] J with wj # 0. However, such an x” satisfies

Z:’”l vigi(x) + Z 71 wjhj(x") > 0, which contradicts (24). [J

In particular, Theorem 5 implies that the KKT conditions (17) are necessary

for local optimality in a linearly constrained optimization problem.

Example 2 (Op lity Conditions of Some Op ion Problems)

1. Linear Programming. Consider the standard form LP. Since LP contains

only linear constraints, the KKT conditions are necessary for optimality.
f) =X Vf(x) = ¢

gi(x) =—x; = —e] x,Vgi(x) = —e;;

hj(x)=bj - a;.rx,th(x) =-

Upon letting v € R’ (resp. w € R'™) be the vector of Lagrange multipliers

associated with the inequality constraint (resp. equality constraint), we may

write the KKT conditions as follows:

L‘+Z:.1:1 vi(—e;) +Z’I?7:1 wj(=aj)=0,=c-v-— ATw =0 (DF)

v >0, (DF)

vixi =0 fori=1,...,n.(CS)

Here, aj € R™ is the j-th row of A, where j = 1, ...,

ackness)

m. The above can
be expressed more compactly as v = ¢ — ATw >0, vTx =0, which
correspond to the dual feasibility and complementarity conditions for LP.

2. Smallest Eigenvalue of a Symmetric Matrix Let A € S™ be given.

min xTAx  s.t. HX”% =1.

F(x) =xTAx, Vf(x) = 2Ax; h(x) =1~ ||Ix]|2, Vh(x) = -2x
Since the feasible set is compact and the objective function is continuous,
problem has an optimal solution (Weierstrass). Moreover, since the constraint
gradient V(1 —||x ||§) does not vanish at any feasible solution to (26), the reg-
ularity condition in Theorem 3 is satisfied (LICQ). Hence, the KKT conditions
are necessary for optimality. Upon letting w € R be the Lagrange multiplier
associated with the equality constraint, we can write the KKT condition as
2Ax —w(2x) =0

This yields Ax = wx, which shows that x has to be an eigenvector of A with
eigenvalue w. To determine the optimal value w* of and optimal solution x*
to problem (26), note that (x*) T A(x*) = w*||x* H% = w*. This implies
that the objective value is smallesl when w* is the smallest elgenvalue of A,
and the optimal solution x™ is an eigenvector of A corresponding to w*

3. Optimization of a Matrix Function Let A € S7!, and b € R4y be glven
Consider the following problem:

inf —logdetZ st.AeZ <b, ZeSY,.

We claim that problem has an optimal solution: To see this, observe that
Z = (ﬁ) 1 is feasible. Thus, problem is equivalent to

infzcq —logdet Z, where

F={ZecS}:AeZ <b,-logdetZ < —nlog(b/tr(A))}.

Now, for any Z € ¥, we have A (A)tr(Z) < Ae Z < b. Reason:
AeZ=uw(ULU'Z)=tu(ZU"ZU) = er'l:l A4 (A)(UTZU);;

> 3 Amin (A) (UTZU)ii = Ain (A) L (UT ZU);

= Apin (A) tr(UT ZU) = Apin (A) tr(Z). This implies

Ai(Z) < b/Apin(A) fori = 1, ..., n. Onthe other hand, fori =1, ...,

nlog(“(A)) —logdetZ = —Z 1 log i (Z)
> ~log A; (Z)—(n—l)log(

i (Z) 2exp<nlog(m) n—l)log( (A>)) > 0. In partic-
ular, we see that Z +— — log det Z is continuous on Tand hence ¥ is closed.
Since optimizing a continuous function over a compact set, it has an optimal
solution (Weierstrass). This implies problem has an optimal solution.

Since problem contains only linear constraints, the KKT conditions are neces-
sary for optimality. It is known that

Q7 JG9) = V(= logdetZ) = —Z~!, Vg(Z)=V(AeZ-b)=A
Upon letting v € R be the Lagrange multiplier associated with the inequality:
-Z ' 4vA=0, v=20, v(AeZ-b)=0

From the first equality, we must have v > 0 and Z = Al /v. This, together
with the third equality, implies thatb = A e Z = %(A e Al = n
Hence, we obtain v = n/b. Since the above KKT conditions admit a unique
solution, we conclude that Z* = bA~ ! /n must be the optimal solution.

In the case where (5) is a convex optimization problem, the KKT conditions are
sufficient for optimality as well. To prove this, let us first define the Lagrangian
function L : X X R"1 x R™2 — R associated with problem (5) by

oY) ) , which yields

mp my

L(x,v,w) = f(x) + Y vigi(x) + Y wihj(x).
i=1 j=1

In the case where (5) is a convex optimization problem, the KKT conditions

are sufficient for optimality as well. To prove this, let us first define the La-

grangian function L : X X R"1 X R™2 — R associated with problem (5)

by LOx,vow) = f(x) + S0 vigi (x) + 272 wih; (x).

Theorem 6 Consider problem (5), where X is open and convex,
f.g1, ---»&m are convex on X, and hy, ...,hM2 are affine. Suppose

that (X, v, w) € X X R™1 x R™2 is a solution to the KKT conditions

gi(x) <0fori=1,...,my, (PF)

hj(x)=0forj=1,...,my, (PF)

%f(x)+2legl(x)+Zw]Vh (x)=0, (DF)
i=1 J=1

v 20, (DF)

vigi(x)=0fori=1,...,m. (CS)

Then, X is an optimal solution to (5).

Proof Since the function x — L(x,v,w) = f(x) + Z:n= vigi(x) +
n

Zj 1

that X is a global minimum of x — L(x, v,

conditions (b), (d), and (e), implies that

JE) = fO+ 50 g () + 273
= minyex {£(0)+ X1 vigi (x) + 275w () |

Wihj (x) is convex on X, by condition (c) and Proposition 2, we see
w) in X. This, together with

Wihj(X)

s - m n

S infyexig; (x)<0.ielmyih (x)=0.j€[my ] {f () + X, vigi(x) + ij

< infeXig, (x)<0.elmy i (x)=0jelmy] S (x) . D

It is important to note that Theorem 6 assumes the existence of the Lagrange

multipliers v € R™1 and w € R™2. Thus, it does not contradict the

observation we made in Example 1.

Conclusion:

Necessary (Theorems 3-5):

(1) LICQ; (2) g convex, h affine, Slater CQ; (3) g concave, h affine

Sufficient (Theorem 6):

X open and convex, f convex, g convex, h affine, optimal exists

Example 3 (Power Allocation Optimization in Parallel AWGN Channels)

Consider n parallel additive white Gaussian noise (AWGN) channels. For

i = 1,...,n, the i-th channel is characterized by the channel power gain

hi > 0 and the additive Gaussian noise power o; > 0. Let p; denote the

transmit power allocated to the i-th channel, where i = 1, ..., n. The maxi-

mum information rate that can be reliably transmitted over the i-th channel is
h;

then given by r; = log, (1 + h‘P' ) (In2)~! ln(l +

Given a budget P on the total tmnsmll power over n channels, our goal is to
allocate power p1p, ..., pn on each of the n channels such that the sum rate
of all the channels is maximized. We are led to the formulation:

h n
max Zln(l+ Lp') s.t. Zpi <P;pi20fori=1,...,n

i=1 i=1
It is easy to verify that the objective function is concave. Hence, problem is a
linearly constrained convex maximization problem. Now, by Theorems 5 and
6, every solution (5, v) € R” x R™*! (0 the following KKT system will
yield an optimal solution p € R':

vo - vi = m fori =1,...,n, (DFI)
vo (Z?:I pi— P) =0, (CS1)

vipi =0 fori=1,...,n, (CS2)

vi 20 fori=0,1,...,n. (DF2)

we may assume i1; > O fori = 1, ..., n. Then, we have vy > v; > 0 by two

1 i
vo—vi n.(32)
Now, if p; > 0, then v; = 0 by (CS2). On the other hand, if p; = 0, then in

Ty fori =1,...,
1 gi

(DF)s, which implies that p; =

order to satisfy (32) with some v; > 0, we must have Yo T B <0
i
H brain py = (- — ) fori=1
ence, we obtain p; = Yo T T ori = 1,...,n.
Moreover, since vy > 0, >} | Pi = Pby(CSD). Z (— - % =P.
i= VO i

In particular, we can solve for the unique positive root v of the above equation
by a simple bisection search over the interval 0 < vy < max; (hl/(rl)

Once we have ¥, we can extract the optimal allocation p = (py, ..., Pn)-
6.4 Lagrangian Duality
inf f(x) s.t. gi(x) <0 fori=1,...,my,
hj(x) =0 forj=1,...,my,
x€X. (P)
Here, f, g1, .-, 8my» hy, ..., hm2 : R” — R are arbitrary functions, and

X is an arbitrary non-empty subset of R’

We write the first two sets of constraints in (P) as G(x) < Oand H (x) = 0.
where G : R — R™1 is given by G (x) = (g1 (x), - 8m (x)) and
H:R™ — R™2 is given by H (x) = (hy (X)), ..., hmy (x)).
Reformulate (P) using a penalty function approach. (P) is equivalent to
infyex supveRTl weR™ L(x,v,w), where

L :R™ xR"1 xR™2 — Ris the Lagrangian function associated with (P):
L(x,v,w)=f(x)+v'G(x)+w' H(x).
This follows from the fact that for any x € X, (35)

F(x)

su;
P +00

vE]RTl L weRM2

{F)+vTG(x)+w H(x)} = {

otherwise.
Penalize by letting v T +00, letting w T +00 or w | —co.
Now, it is clear that for any X € X and (V,w) € R:nl

0(v,w) =infxex L(x, %, w) < L(%, 5, W)
<sup L(X,v,w)=y(%). (%

x R"M2,

ml ,weR™2

Hence, we have v = sup infyex L(x,v,w)

R, i ,weRM2
< lﬂfxeX sup __my m
veR, ', weR 2

Observe that the right-hand side is precisely problem (P). This motivates us to
define the following dual of (P):

*
Vg =Sup O(v,w), (D)

L(x,v,w)= v;‘,

RTI ,weR™2
where @ : Rl x R"™2 — R is the value function given by

O(v,w) =infyex L(x,v,w).

Problem (D) is known as a Lagrangian dual of problem (P).

Since the set X is arbitrary, there can be different Lagrangian duals for the same
primal problem, depending on which constraints are handled as G (x) < 0
and H (x) = 0, and which constraints are treated by X. Different choices of
the Lagrangian dual problem may lead to different dual optimal value.
Theorem 7 (Weak Duality Theorem) Let X € R feasible for (P) and
(v, w) € R™1 x R"™2 feasible for (D). Then, 8 (¥, w) < y(¥) =f(X).
Note that the value function € is the pointwise infimum of affine functions. As
such, it is a concave function, regardless of the convexity of (P). In particular,
the Lagrangian dual (D) is always a convex optimization problem. So strong
duality between (P) and (D) may not hold in general.

if G(x) < 0an



Example 4 (A Primal-Dual Pair with Non-Zero Duality Gap)

vp =mingex —x s.t.x <1, x € X={0,2}.
It is clear that the optimal value of and optimal solution are v = 0 and

* = 0, respectively. By dualizing the inequality constraint, we oblam the
following Lagrangian dual: V:I =sup,, >0 Minyeqp ) {—x+v(x - 1}.
Also we can: V7 = sup,,» Minyeg {—x +v(x — 1) +w(x(x =2))}.
Observe that for any v > 0, we have
minye(o ) {=x+v(x - 1)} =min{-v,v - 2}.
It follows that the optimal value of and optimal solution to (38) are v;l, =-1
and v* = 1, respectively. In this case, we have vl*, > v:;.
Definition 1 We say that (X, v, w) € R™ X RTI X R™2 is a saddle point
of the Lagrangian function L of (P) if the following conditions are satisfied:
(@ % € X. (b) % > 0. (c)Forall x € X and (v,w) € Rj' | x R"™2,
L(X,v,w) < L(%,,W) < L(x,7,W).
In particular, the point (X, ¥, W) is a saddle point of L if X minimizes L over
all x € X when (v, w) is fixed at (¥, W), and (¥, W) maximizes L over all
(v,w) € RTI X R"™2 when x is fixed at X.
Def + (*): L(X, v, W) =infxex L(x,V, W) =supyex L(X,v,w).
Theorem 8 The point (X, v, w) € R x RT] x R™2 is a saddle point of
the Lagrangian function L associated with (P) iff the duality gap between (P)
and (D) is zero and X and (¥, w) are the optimal solutions to (P) and (D).
Proof Suppose that (X, v, w) is a saddle point of L. From condition (c),
L(X,v,w) < L(X,7,%) < L(x,9,w) V(v,w) € Rj'T x R™2 1t
follows from condition (a) and the identity (35) that X is feasible for (P). It
is also clear from condition (b) that (¥, w) is feasible for (D). Hence, by
condition (c), we have
O(v,w)=min L(x,v,w) =L(X,v,w) = ymax

xeX veR, I \wer™2

L(x,v,

i.e., the duality gap between (P) and (D) is zero, and the common optimal value
Vvp =V is attained by the primal solution ¥ and dual solution (¥,).
Conversely, suppose that X and (v, w) are optimal for (P) and (D), re-
spectively, with f(x) = 6(v,w). Then, we have ¥ € X, G(X) < 0,
H(x)=0,and v > 0; i.e., conditions (a) and (b) are satisfied. Moreover, by
the primal feasibility of X and dual feasibility of (v, W), we have
6(v,w)=inf L(x,v,w) < L(x,v,w) < sup
xeX

m _
veR, 1 wer™

L(x,v,

Since we have f(X) = 6 (¥, w) by assumption, equality must hold through-
out the above chain of inequalities. In particular, for any x € X and

(v,w) eRy " % R™M2 | we have

L(x,v,w) < sup L(x,v,w)=L(x,v,w) = inf L(x,
m my xeX

veT&+ SWER
i.e., condition (c) is satisfied. This completes the proof. [J
sup inf L(x,v,w)= ing( sup L(x,v,w).

€ €

VE]RTI ,weR"M2 x x VERTI ,weR"M2

Theorem 9 Let L be the Lagrangian function associated with (P). Suppose
(a) X is a compact convex subset of R”*; (b) (v, w) — L(x, v, w) is con-

. m
tinuous and concave on R} L % R™2 foreach x € X; (x> L(x,v,w)

is continuous and convex on X for each (v, w) € RTI x R™M2,
Then, we have (strong duality)

sup mm L(x,v,w) = mm sup
veIR+ ,weRmZ €x I wer™2
Theorem 10 (Saddle Point Optimality Conditions)
The point (X, v, w) € R" XRTI X R"2 is a saddle point of the Lagrangian
function L associated with (P) iff the following hold:
(a) (Primal Feasibility) X € X, G(x) < 0,and H(X) =0
(b) (Lagrangian Optimality) v > 0 and X = argminyex L(x, Vv, w).
(¢) (Complementarity) v G(X) = 0.
Proof Suppose that (X, v, w) is a saddle point of L. Then, conditions (a)
and (b) follow from Definition 1 and Theorem 8. Now, Definition 1 implies
that (%) = L(X,0,0) < L(X, v, W) = f(%) +v' G(%),
or equivalently, ' G (%) > 0. On the other hand, since ¥ > 0 and
G (%) <0, wehave v G (%) < 0. This gives condition (c).
Conversely, suppose that (X, v, w) € R™ x RTI X R™2 satisfies condi-
tions (a)-(c) above. Then, we have L(x, v, w) < L(X, v, w) forall x € X.
Moreover, we have L(%, v, W) = (%) + 7' G(x) +w ' H(%)
> f(’()+VTG(’C)+M TH(x) = L(X,v,w)V(v,w) € le xR™M2,
since ' G(x) = 0,G(¥) < 0, and H(X) = 0. By Definition 1, we
conclude that (X, v, W) is a saddle point of L. [J
Corollary 2 Consider problem (P), where X is open and convex,
815 &my are convex and continuously differentiable on X, and
hy, ..., hm2 are affine. Suppose that (P) has an optimal solution and sat-
isfies the Slater condition. Then, the dual (D) also has an optimal solution.
Moreover, we have v;‘, = Vz*i‘
Proof Let X be an optimal solution to (P). By Theorem 4, there exist v € R""1
and w € R™2 such that (i, v, W) satisfies the KKT conditions of (P). By
Proposition 2, V f (X) +Z’71 viVgi(x) +ijl w;Vh;j(x) = 0isequiv-
alent to ¥ = arg minyex L(x, v, w). So (X, v, w) is a saddle point of the
Lagrangian function L associated with (P). It follows from Theorems 8 and 10
that (¥, ) is an optimal solution to (D) and v}, = v;A [}
Corollary 3 Consider problem (P), where X is open and convex, f is convex
and continuously differentiable on X, and g1, ..., &, Ry, ..oy hm2 are
affine. Suppose that (P) has an optimal solution. Then, the dual (D) also has
an optimal solution. Moreover, we have vy, = v%.
Proof: same as Corollary 2, except invoke Theorem 5 instead of Theorem 4.

L(x,v,w).
n
veR,

6.4.1 Example Problems
LetQ € S™, A € R"™ " b € R™ and ¢ € R™ be given. Consider
the following problem: infx f(x) = %XT Ox+c'x stAx<b
(a) Let v € R be the multiplier ciated with the constraint Ax < b.
Write down the KKT conditions associated with Problem and explain why
they are necessary for optimality.
(b) Let X € R be a KKT point of Problem; i.e., there exists a multiplier
v € R™ such that (X, V) satisfies the KKT conditions found in (a). Let
I(x)={i: aiT)? = b; }, where aiT is the i-th row of A, be the active
index set associated with X. Suppose that whenever d € R satisfies
a;rd < Oforalli € T(x),wehave d' Qd > 0. Show X is a local
minimum of Problem.
A: (a) The KKT conditions associated with Problem are given by
Ox+c+ XM via; =0; v 2 0; vi(a]x—b;) = 0fori =
1,...,m.
Since Problem is a linearly constrained optimization problem, by Theorem
5, the above KKT conditions are necessary for optimality.
(b) Since f is a quadratic function, by Taylor’s theorem, f(x) — f(X) =
VFE) T (x - X)+ %(X - %)TQ(x - x) forany x € R™. Now, let

x be a feasible solution to Problem that is sufficiently close to X and set
=x-X.

f(X) f®) =Vf®Td+1dT0d=-3" ¥
=-2ier(x) v,al. (x —X)+ idTQd >0,
where the second equality follows from the KKT condition (i), the third
equality follows from the KKT condition (iii) (since v; = 0if i ¢ 7 (X)),
and the last inequality follows from the KKT condition (ii) and our as-
sumption on Q (since a;rd = a'T (x —x) = a;rx — b; < 0 for all
i€ I(x)).

2. Consider the problem min, cgn max{gj (x), ..., gm (x)}. Show that
x* e R is an optimal solution to Problem (1) if and only if there exists
a vector u™ € R such that
T upVei(x) =05 w20, T up

ald+%d"Qd

=1

*

W= 0 i g (x) < max{g(x*)..gm(x)}. for j =
1,...,m.
A: Problem equivalent to: minz = s.t.gj(x) < zforj=1,...,m.
\% 4
$esm l & >J 0. (g (x*) ~ ") = Oforj =
], ., m,
gj(x*) <z for j=1,...,m u* > 0.

7 Simplex Method

Definition Let S C R’ be a non-empty convex set, x € S. If for any
A€ (0,1)and x1,xp € S, x = Ax] + (1 = A)xy implies x; = x = x,
then x is called a vertex of S.

Definition Let S C R’ be a non-empty convex set, d € R'™. If for any
x € Sand A > O such that x + Ad € S, then d is called a direction of S.
Mo 4a) directions d1, dy of S, d = ad + Ad, where a > 0, then d is
called an extreme direction of S.

Let S = {x € R | Ax = b, x > 0}, where A € R i full row rank.
By definition, d # 0 is a direction of S iff Ad =0,d > 0.

Let A = (B, N), where B € R s non-singular, N € rmx(n-m)
Decompose x as xT = (x;,x;\r]) Then x € S can be written as

Bxg+Nxyn =b, xg 20, xp 2 0.Thus, xg = B~ (b - Nxpn).
B~ 'p
0

L)et:Xf\()ﬁ.O, then xg = B~'b. 1t B~'b > 0, then x = is a

vertex of S. In fact, if there exists A € (0, 1) and xj, X, € S such that

x=Ax;+ (1 —A)xp, then x| =xp = x.

Theorem Let S = {x € R" | Ax = b, x > 0}, where A is full row rank.

B~ b
0

Then x € S is a vertex of S iff x can be expressed as x = ( , where
P w) < L(x v
=(B,N),Bis ?nvertlble and B~!b > 0.

l’roof Only need to prove necessity. Let x € S be a vertex of S.
Wlo.g, let x = (x1,..., X%, 0, 00T, where x; > 0,0 = 1,..., k.
Let A = (ay,....,an). We claim ayp,...,ayp are linearly indepen-
dent: If there exist non-zero Ay, ..., Ag such that Z:'(:l Aja; = 0. Let
A= (A0 A, 0,..,00T =x+ ad, then

%xz, Appropriate choice of @ > 0 can make x1, xo > 0 and

. let xg Xy = x — ad,
x = %xl +
x| # X2. Note that Ax| = Ax + “Zf‘\:l Aja; = b, sox; € S. Similarly,
Xy € S. This contradicts with x being a vertex, so @y, ..., aj. are linearly in-
dependent. Because A is full row rank, we can always choose a1, ...
from g, ..., an such that B = (ay, ..., am, ) is invertible.

-1
X = (BO b) , where B~1b = (X1 -e0s g5 0, ..., 0)T > 0.0

Theorem 2.4 Let S = {x € R | Ax = b, x > 0} be non-empty, where A
is full row rank. Then S has at least one vertex.

Proof Let x € S, wlo.g., let x = (X{, ..., Xk, 0, ...,0) T, where x; > 0,
i =1,...,k. If ay, ..., ay are linearly independent, then k < m, so
by previous Theorem, x is a vertex of S. Otherwise, there exist non-zero
Ap, ..., A such that Z

sam
Therefore,

A_] Aja; = 0. Without loss of generality, assume

A; > 0. Let @ = min T |4 >0,i= 1,4..,k} . Construct X as fol-
1

lows: Xj =x;j —adj, i=1,...k x; =0,i=k+1,...,n.Thenx € S
and the number of its non-zero components is at most k — 1. This process con-
tinues, and we will eventually find X € S with linearly independent non-zero
components corresponding to A, and thus ¥ is a vertex of S. [J

Theorem 2.5 Let S = {x € R" | Ax = b, x > 0} be non-empty, where
A is full row rank. Then d € R’ is an extreme direction of S iff there
exists a decomposition A = (B, N) and the j-th column a; of N such that

_g-l,.
B_laJ < 0, making d = t( Be_af),wheret > 0 and ej is the j-th
J

unit vector in R =",

Theorem 2.6 Let S = {x € R" |
non-empty, where A is full row rank. Let the vertices of S be
X{,..., Xk, and the extreme directions be dj,...,d;. Then S =

{Z{il Aixi +Z_l,-:1 pjid; | Zf—‘:l A=1,2420,pu;20,i=1,....k,
Primal Simplex Algorithm Step 0. Compute initial basic feasible solution

Lo (B7'p
o |
Step 1. If ry = el —cIB IN > 0, stop; current basic feasible solution
is optimal, otherwise, go to Step 2.
Step 2. Choose j such that ¢ -cp TBla; <0.1fa; = B! aj <0,

stop; the problem is unbounded, otherwlse go to Step 3. (calculate z;’s and
(oj=cj—2zj)%)

Ax = b,x = 0} be

B la:
Step 3. Compute A by (2.11), let x := x + /ldj, where dj = Be . aj).
J
Return to Step 1. (calculate (b;/a;;))’s; calculate z = <CB, b>)

Example:

Basis | Cp | x X X3 X4 X5 b
X 50 1 0 1 0 -1 50
X4 0 0 0 -2 1 1 50
X 100 [ O 1 0 0 1 250
zj 50 | 100 50 0 50
o 0 0 =50 | O =50 | z=2.75k

8 Integer Linear Programming
max{cx +hy: (x,y) € S}
S:={(x,y) €Z! xRY : Ax+ Gy < b}.
8.1 Examples

Assignment: There are m machines and n tasks. The available working hours
for machine 7 is bj. The working hours required for machine i to complete
task j is ajj, and the cost is ¢; j. How to optimally assign tasks to machines
1, if machine i processes task j,

to minimize the cost? Let Xij = {0 therwi
, otherwise.

minZZc,jx,j ﬁtZa,,x,jsb,, i=1,...
i=1 j=1
inj=l, Jj=1...,

Set Covering: A certain area is divided into m districts, and it is required to
establish n emergency service centers. The location of each center is known,
and each center requires a setup cost. Each center can serve a certain range of
districts. How to choose the centers to cover the entire area and minimize the
setup cost? Let M = {1, ..., m} be the districts and N = {1,...,n} be
the candidate centers. Let S; € M be the set of districts that center j can
serve, and ¢ j be the setup cost of center j. Define the 0-1 matrix A = (a,-j),
where a;j = 1ifi € Sj, otherwise a;; = 0.

Letx; = 1 if center j is selected, O otherwise.

n n

minZijj S.I.Zaijxj' >1,i=1,...

j=1 j=1
8.2 Useful Concepts
8.2.1 Unimodular Matrix
Theorem: If the optimal basis matrix B of a LP problem satisfies det(B) =
+1, then the optimal solution is an integer solution.
Definition: Let A be m X n integer matrix. If the determinant of any square
submatrix of A is 0, 1, or —1, then A is called a totally unimodular matrix.
Property: If A is totally unimodular, the elements of A are 0, 1, or —1.
Proof: Any submatrix of A has a determinant of 0, 1, or —1 implies the
elements ajj are 0,1,or—1.0
Theorem: Let A be a totally unimodular matrix and b be an integer vector.
Then all vertices of polyhedron P = {x € R} | Ax < b} are integer points.
Proof: The polyhedron P can be representedas Ax+1y =b,x € R}, y €
R Let (A, I) = (B, N), where B is the basis matrix. By Property B!
is integer matrix, thus x| = (Bil b,0) 7 is integer vector. Since vertices of
the polyhedron correspond to basic feasible solutions, P has integer vertices.
Corollary: A totally unimodular, and b and ¢ integer vectors. If max{cT x |
Ax < b,x € R} and its dual min{b"y | ATy > ¢,y € R} have
optimal solutions, then the optimal solutions must be at integer vertices.
Theorem: If for any integer vector b, the vertices of polyhedron P = {x €
R} | Ax < b} are integer points, then A is a totally unimodular matrix.
Take any k X k non-singular submatrix A| of A. Since (A, 1) is row
complete, there exists an m X m non-singular submatrix of (A, I) of the

sm,

n,

Xij € {0, 1}

,m; x € {0,1}"

form A = (ﬁl I 0 ) Let b = Az + e;, where z € Z". Then
2 m—-k
Alb =z 4+ &.‘1, where a.“ represents the ith column of AL By ap-

propriate choice of z such that z + d; =1 > 0, itis clear that z + d;] is the

direction vector formed by the basic \Andble components of the vertices of P.
By assumption, z + d; 1 e 7" hence a; 1 e7m Thus, A=1 is an integer

is an integer matrix. Since A and AII are integer

matrices, det(A ) and dct(AIl )
[det(Ap)] - |det(A[1)| = |det(Aj A7) =1,

hence | det(A;)| = 1. Thus, matrix A is totally unimodular. [J

Corollary: A is totally unimodular iff for integer vectors a, b, ¢, d, the
vertices of polyhedron {x | @ < x < b, ¢ < Ax < d} are integer points.
8.2.2 Bipartite Graph

Undirected graph G = (V, E), define the incidence matrix M of G, where
the rows and columns are labeled by the vertex set V and edge set E respec-

tively. If e is incident to vertex v, then My, ¢ = 1; otherwise, My, ¢ = 0.
If the vertex set V of a graph G = (V, E) can be partitioned into two non-

matrix, and therefore A ]

are integers. Moreover,

jempty. subisets V) and V) such that the two endpoints of each edge belong to

V1 and V5'respectively, then the graph is called a bipartite graph.

Theorem: M is totally unimodular iff graph G is a bipartite graph.
Independent set: a set of vertices in a graph, no two of which are adjacent.
Edge cover: a set of edges such that every vertex of the graph is on at least
one edge of the set.

Matching M: a set of edges without common vertices.

Vertex cover R: a set of vertices that includes at least one endpoint of every
edge. [M| < |R|

Let M be the incidence matrix of the bipartite graph G = (V, E), we obtain
max{eTy | My <e,ye Z_LV‘ }=min{e"x [ MTx>e,x € Z_LE‘ 1,
Suppose each vertex in graph is incident to at least one edge, the max number
of independent vertices = the min number of edges in a edge cover.
Similarly, by total unimodularity of the incidence matrix of a bipartite graph,
max{eTx | MTx <e,xe€ ZLE‘} =min{eTy | My > e,y € ZL_Vl).
The above equation shows that the maximum number of edges in a matching
= the minimum number of vertices in a vertex cover.

8.3 The Transportation and assignment problems

8.3.1 Matching and Assignment on Graph G = (V, E)
A subset M of the edges of G is called a matching if no two

edges in M share a common vertex (any vertex of G is incident to at most one
edge of M). If vertex u is incident to any edges in M, then u is M-exposed.
Definition: Given a subset of vertices R C V/, if every edge in E has at least
one vertex in R, then R is called a vertex cover of G.

If every vertex in G is matched by an edge in M, then M is called

max  50x; + 100x;
s.t. x| +xp +x3 =300
2x1 + X + x4 =400
xp + x5 =250
Basis | Cp | x| xy | x3 [ x4 | x5 b bi/aij
X3 0 1 1 1 0 0 [ 300 [ 300/1 Definiti
X4 0 2 1 0 1 0 400 400/1
X5 0 0 1 0 0 1 250 250/1
zj 0 0 0 0 0
T 50 | 100 0 0 0 z=0 Definiti
Basis | Cg | x| X3 X3 | X4 X5 b bilaij
X3 0 1 0 1 0 -1 50 50/1
X4 0 2 0 0 1 -1 150 15072
X 100 | O 1 0 0 1 250 250/0
zj 0 100 0 0 100
oj 50 0 0 0 —100 z =25k

a perfect matching. If there is no other matching M” such that |[M’| > |M|,
then M is called a maximum matching. Clearly, every perfect matching is a
maximum matching.

Theorem: Given a graph G, for any matching M and any vertex cover R, it
always holds that |[M | < |R|.

Definition: Given a matching M in G, if a path P alternates between edges
in M and E \ M, then P is called an alternating path w.r.t. M. If the start



and end vertices of P are not adjacent with edges in M, then P is called an
augmenting path w.r.t. M.

Theorem: M is max matching iff there’re no augmenting paths w.r.t. M.
Maximum Matching Algorithm:

0. Given a bipartite graph G = (V}, V,, E), let M be a matching of G.

All vertices are unmarked and unchecked.

1. 1.0 Mark all M-unexposed vertices in V| with *.

1.1 If all marked vertices are checked, go to Step 3. Otherwise, select a
marked unchecked vertex i. If i € V|, goto Step 1.2. If i € V3, go
to Step 1.3.

Check all edges (i, j) incidentto i € V1. If (i, j) € E\ M and j

is unmarked, mark j as i. Go to Step 1.1.

Check all edges (j, £) incidenttoi € V. If i is M-unexposed, go to

Step 2. Otherwise, find edge (j, i) € M where j is unmarked, mark

Jjasi. GotoStep 1.1.

2. Starting from i € V3, use the marked vertices to find an augmenting path
P.LetM := (M UP)\ (MnN P). Remove all marks and go to Step 1.

3. Let V1+ and V2+ denote the marked vertices in V) and V3, V™ and V;°
denote the unmarked vertices. The algorithm terminates.

Result: R =V~ L)VZ+ isacoverof G; |[M| = |R|, and M is max matching.

Assignment Problem:

Suppose a company is preparing to assign n workers X|,..., Xy, ton

tasks Y7,...,Yy. Consider a weighted complete bipartite graph G

(Vi,Vp,E), where V| = {X|,...,Xn}, Vo = {Y],....Yn}, and

weight ¢;jj on edge (X;, Yj) represents the efficiency of worker X; com-

pleting task Y Equivalent to finding a perfect matching with max weight.

12

1.3

max "IZ, | CijXij
s.t. ijlx”—l i=1,2,...,n
Styxij=1, j=12....n
xij €4{0,1}, i,j=1,2,....n
Bipartite graph totally unimodular the last constraint relaxed:
xij 20, i,j=12,.
min noup+ Vi
Dual problem: Z‘ 17 Z’ 1

s.t. u; +vj > ¢ij, i,j=1,2,....n

Theorem 4.8 By the LP duality theorem, if there exists a feasible solution x*

to the assignment problem and a pair u, v that satisfy the following two condi-

tions: (i) Gjj = cjj —uj —vj < O‘(ii)Whenx i=1¢i5=0, then x* is
the optimal assignment solution, and the optimal value is Zl 1 Ui +Z vj.

Assignment Problem Algorithm:

0. Given an initial u, v satisfying ¢;j < 0,i,j =12,...,
E={(i,j) € E| ¢ij = 0}. Use Algorithm to find the maximum
matching M* in bipartite graph G = (Vy, Vs, E). If [M*| = n, the
algorithm ends and M is the optimal assignment solution. Otherwise,
record M = M™ and the marked vertex sets Vl+ R V2+ . Go to Step 2.

1. (Original). Let E = {(i, j) € E | ¢jj = 0}. Based on the matched M
and marked vertex sets V1+’ V2+, continue to find the maximum matching
M*in G = (V|, V5, E). If [M*| = n, the algorithm terminates and
M'* is the optimal assignment solution. Otherwise, record M = M™* and
V]+’ V2+, then go to Step 2.

2. (Dual). let § = min{—¢;; | i € V1+,j e W\ V;};foralli € V1+,

&;forall j € Vi, letv; := vj + 6. Goto Step 1.

n. Let

letu; =u; —

8.3.2 Transportation Problem

Problem: A certain product has m productionsites, denotedas A, . . ., Ay,
with production quantities @y, ..., . There are n sales sites, denoted as
By, ..., By, withsales quantities by, . . . , by,. Suppose the unit transporta-
tion cost from production site A; to sales site Bj is ¢jj. How should these
products be transported to minimize the total cost?

m n n
ZZCUXU s.t. Zx,-j =dai,
J=1

i=1j=1

Vi<i<m

nm
Zx,-j =bj, Vl<j<n

>0, Vi=1,2,...

(Balanced transportation problem)

Xij

m ._yn -
Assume 370 a; = Zj:l b;j=0Q
It’s a special case of minimum cost network flow problem.

Dual problem: max Z;’Zl aiui+z;':l bjvj st uj +vj < cij
=cij—(ui+vj)200G=1,2,...,m,j=12,...,n)
Algorithm:

1. Find the Minimum Spanning Tree (The basic feasible solution corresponds
to a spanning tree; find the arcs with the minimum costs first).

2. Find a dual solution by solving ¢;j = u; + vj and let v, = 0.

3. Calculate Verification Number: o; = ¢jj — (u; +vj), Vi, j. Ifall
0 j’s are non-negative, then terminate; otherwise go to step 4.

4. Let wgr = llm]!l{wiﬂwij < 0}. Add arc (s, t) into the spanning tree

found in step 1 and let x5z = 6 to remove an arc. Get an improved spanning
tree, go to step 2.

8.4 Graph and Network Flows

8.4.1 Shortest Path Problem

Directed graph D = (V, A), let ¢y, represent the weightonarc (1, v) € A
(length of the arc). Solve the shortest s — ¢ path problem:

min > Cu,vXu,v
(u,v)eA
s.t. Xv,u — X,y =1,v=s,
uevt(v) uevV=(v)
Xv,u — Xu,y =0,Vv € V\ {s,1},
uevt(v) uevV=(v)
Xv,u — X,y =-Lv=t,
uevt(v) uevV=(v)
A
X € ZL l.
By total unimodularity, LP relaxation of problem has integral optimal solution.
max 7y — ;g
Dual Problem: s.t. Ty = 7 < s ¥ (1, v) € A.

Theorem: z is length of shortest s — ¢ path iff there exists 7 = (7y )y ey
satisfying 7ty = 0, 17 = 2, My — @y < Cu,v, where (u, v) € A,
Dijkstra Algorithm:

for all ueV: u = deletemin(H)

dist(u) = 00 for all edges (u,v) € E:

prev(u) =nil if dist(v) >dist(u) +1(u,v):
dist(s) =0 dist(v) =dist(u) +(u,v)
H = makequeue (V) prev(v) =u

while H is not emprty:

decreasekey(H,v)

Bellman-Ford Algorithm (allowing negative length):

sm,j=1,2,...

b

dist(s) =
repeat |[V|—1 times:
for all ec E:
dist(v) = min{dist(v),dist(u) + l(u,v)}
Floyd-Warshall Algorithm (all-pairs shortest paths):
for i=1 to n: for k=1 to n:
for j=1 to n: for i=1 to n:
dist(i,4,0) = co for j=1 to n:
for all (i,j) € E: dist(i, j,k) = min{dist(i, k,k — 1)
dist(i, ,0) = £(i, ) +dist(k,j,k — 1), dist(i,j,k

for all ueV:
dist(u) =
prev(u) = nil

-1}

8.4.2 Maximum Flow-Minimum Cut Problem

Incidence matrix: Directed graph D = (V, A), where V represents set of
vertices and A represents set of arcs, (1, v) € A indicates an arc from u to
v. Let M be the V X A incidence matrix of the graph. If a flows into v, then
M, 4 = 1;if a flows out of v, then M, 4 1; otherwise, My, 4 = 0.
Theorem: The incidence matrix M of a D = (V, A) is totally unimodular.
Circulation: Forany x € RLAl that satisfies M x = 0, the following holds for
any v: Y, cv— (v) Xu,v = ZueV*’(v) Xy,u, Where x can be viewed as a
circulation in the graph M, and the inflow and outflow at each vertex are equal.

Since M is totally unimodular, for any integer vector ¢ € ZLAl, polyhedron
P={x| Mx=0,0 < x < c} has integer vertices. Therefore, if there is
acirculation x s.t. 0 < x < ¢, then there must exist an integer circulation.

Circulation Problem: Let f;, ,, denote the profit per unit flow on arc (u, v).
Then the maximum profit circulation problem with capacity constraints can

be formulated as: max{f ' x | Mx=0,x < c,x € RL:Al}, ie.,

. MT  oOf[x 0
—min ([~ £, 0], [x,s]), [ 7 [s]’[c]'
Its dual problem is: min{cTy | MTz+y > f, y eRA, z € RIVI}.
By Corollary, if above two problems have optimal solutions, they must attain
optimal values at integer vertices, and their objective function values are equal.
Maximum Flow Problem: Suppose for a directed graph there exists an arc
(z,s) with unit profit f; ¢ = 1, and other arcs (u, v) have fy . = 0. If
Ct,s = +00, problem reformulated:

max  Xrs

s.t. Xu,v — xXyu=0, VveV,
ueV=(v) ueVv+t(v)
0 < xu,v <cuw, V(u,v) €A

Consider D’ = (V, A), where A does not contain arc (¢, s). The above
problem can be seen as the maximum flow problem from s to 7 in the graph
D', witharc (¢, s) added artificially. The dual problem of above formulated:
min CuvYu,v
(u,v)#(t,s)
Zu = 2v < Yu,v,
zt 2 zs + 1.
LetU={veV|zy<z}adU=V\U={veV]|z >z}
For any arc (u,v) € A,ifu € Uandv € U, then yy v 2 2y —zu 2
2t — Zs = 1. Thus, the following holds:
Z(u,v)eA CuvYu,v 2 Z(M,V)EA,uEU,VEU CuvYu,y 2 X Cu,v-
Construct a feasible solution § as follows: when (u,v) € Aandu € U,
v e U, set Yu,v = 1; otherwise, set $;,,,, = 0. Therefore, y is an optimal
0-1 solution to problem. Thus, problem can be viewed as the minimum s — ¢
cut problem in the directed graph D’ .

s.t. V(u,v) # (t,s)orV(u,v) € A,

mingy Z(u,v)EA,uEU,veU cuyv | seU,t e U} .

Theorem (with constraints,) The maximum s — ¢ flow problem and the mini-
mum s — ¢ cut problem are dual to each other and optimal values are equal.
Algorithm: Start with zero flow. residual network RN=N

Repeat: choose an appropriate path from s to ¢, and increase flow along
the edges of this path as much as possible. update the residual network RN
G/ = (V, EJ) until no s-t path, where residual capacities ¢/ :

cf _ { = fuv if (u,v) € Eand fuy < cuv

i fou if (v,u) € Eand fy,, >0

8.4.3 Minimum Cost Network Flow Problem
Problem: Given a directed graph D = (V, A), let hy, ,, represent the maxi-
mum capacity of arc (u, v), by, represent the demand at vertex v, and ¢y, v
represent the cost per unit flow on arc (u, v). Let
Vt(v)y={ueV]|(v,u) € A}, V- (v)={ueV| (u,v) e A}.
Then the minimum cost network flow problem can be formulated as
min Cu,vXu,v
(u,v)eA
s.t.

2

Xv,u Xu,y =by, VYvevV,

ueV+t(v) uev-(v)

0<xuy <hyy, Y(u,v)eA
The above problem can be formulated min{c"x | Mx = b, 0 < x < h}.
If the problem is feasible, the sum of demands must be 0, i.e., }\,cy by = 0.
If the capacities /1,y and demands b, are integers, by the total unimodularity
of M, the problem has an integer optimal solution.
Algorithm for Min-Cost-Max-Flow Problem:
1. Set the initial feasible flow to zero.
2. According to step k — 1, obtain the minimum cost flow f(k_l), and
construct the graph L(f(kfl)) (similar to RN, but with cost as weight).
3. In L(f<k71) ), find the shortest path from vg to v¢. If no shortest path
exists, then f(k_l) is the minimum cost maximum flow, and terminates.
If a shortest path exists, get the corresponding augmenting chain in the graph
£~ and proceed to step 4.

4. On the augmenting chain, adjust f(k*I with the adjustment quantity 6:

6 = min min(vl’ Heut (c,-j fl(j" I))’mi“(v,-,vj-)sp* (fl(jl” b )]
f(k ])+0 (v,,vj)eu

7= D g (i) €
f,«ig&]) (vi,vj) ¢ p

5. Repeat the above steps for f(k) , returning to step 2.

8.5 Dynamic Programming

8.5.1 Shortest Path and Principle of Optimality

Property: Suppose the shortest path from s to 7 passes through node p. Then
the sub-paths (s, p) and (p, ) are the shortest paths from s to p and from
p tot, respectively.

Property: Let d(v) be the shortest path from s to v, then

d(v) = minjcy— () {d(i) + ciy }, where V™ (v) denotes the set of all
nodes that can reach node v directly.

Let Dy (i) represent the shortest path from s to i that contains at most k
isolated paths. It can be derived by the following recursive formula:

Dy (j) =min{Dy_; (), min;ey - (j) [Drx—1(0) +cijl}.

Principle of Optimality: An optimal decision for a multi-stage decision prob-
lem is one in which each stage’s decision is also optimal.

8.5.2 Knapsack Problem (13Q3)
0-1 Knapsack Problem:

There is a knapsack with a capacity of b. Consider n items, where the weight
of item j is @ and the value is ¢j. How to choose items to maximize the
total value in the knapsack?

Let x; = 1 if item j is selected, O otherwise.

f* =max{2"fl chJ|Z pajxj <b,x € {0,1}" }

where n, b, cj,aj, j=1, , 1 are positive integers.

Algorithm: The knapsack problem can be seen as seleclmg the items from 1
to n in sequence. For k = 1, ,n,and 1=0,1, , b, define

i (1) = max {25?:1 |Zj?:] ajxj <A,x € {O, l)k} .

It is easy to see that f* = f, (b).

We can use the recursive method to find fy,, that is, use f,,_1 to calculate f,,
use f,_7 to calculate f;,_1, and so on. The initial condition for recursion is

€jxj

_Jer, ifap <4,
filh) = { 0, ifa; > A.
When A > 0, fo(1) =0. Fork=2,...,n,4=0,1,...,b,
Sie-1(2), ifag > 4,
() = { "
fi max{fk—1(A), ck + fr-1(A - ag)}, ifap <A
Backtrack to find the optimal solution:
[0 ) = (B,
n 1, otherwise.
Lel/l* b - ZJ kel G5 thenfork—n—l .., 1, we have
=% fk(/IZ)*fk—l(/lz)s
Kk 1, otherwise.

Linear Integer Knapsack Problem (with repetition):
-|Z;,‘:1 ajxj <b,x € Zf} R

z* = max {Z;?:] c
Method 1:
gr (1) = max Z;:l CijlZ;=l ajxj <A,x € Zi}

Ttiseasy tosee 2* = g, (b). gr (1) = max{g,_1 (), cr+gr(1—ar)}.
Backtrack to find the optimal solution:

gr () =gr-1(2),
pr(d) = {1+p (A —ay), otherwise.
*Pn(b) N X B N
Let/l =b ZJ k+]ajxj,lhentork:nf1,...,1,xk:pk(/lk)4

MethodZ: ForA=0tob: z(1) = MaX g ;< z(A1-aj) +cj.

Method 3: Consider it as a longest path problem. Construct a DAG

D = (V, A), with vertices 0, 1, ..., b, and arcs (2, + aj), A€ Zy,

A < b-aj (j=1,...,n), with weights ¢, and arcs (1,4 + 1),

A € Zy, A < b — 1, with weight 0. Then z(A) is the longest path from

vertex 0 to vertex A. Figure gives a directed graph for the following example:
max  10x) +7xp +25x3 +24xy,

s.t. 2x) + X9 +6x3 +5x4 < 7;

X EZii.
u

paths with zero length are omitted.

8.5.3 Investment Allocation Problem:
With $10W capital, invest in three projects with benefits given by g1 (x1) =

4x1, 82(x2) = 9x2, g3(x3) = 2x7
4x1 +9x + 2x§

. How should the investment amounts

max
be allocated?

st. xXp+xp+x3=10

x; 20, i=1,2,3
State: At stage k, the available amount sy, with s; = 10.
Decision: At stage k, the actual investment amount xj = uy (g ).
Allowed Decision Set: 0 < xp < sp.
Stage Objective: 4x1, 9x,, 2)(%,
State Transition Equation: sz, ='sp — x.
Backward Solution:
S (se) = maxo<x <y Adi (ke xp) + fieat (Tie (sie> X)) 3
fa(sq) =0 N
f3(53) = Maxoz.y <3 253 = 1 (53) = 3, f3(s3) =2(52 = x2)?
Sa(s2) = maxo<x, <s, (9X2 +2(s2 - Xz)z)
Since the objective function is convex, f> (s3) = max{2s5,
Thus, if 55 > 3, Folsy) =2s
ifsy) < 2, then ”2(5‘2) =50, fa(s2) =952
S1(10) = maxg<x, <10 (4x1 + f2(10 = x1)) , where
2010 xp)2, i
9(10 = x1),

, the objective function is convex, so

lhcnu (s2) =0,

fz(lO—X1)={

11
For0 < x) < 5,

max{2><|02 4x L +2><(]0—Ll) }:200

11
For 7

< x1 < 10, the objective function is 90 — 5x1, so
L, A00)=90-5x L =625

wi(10) = 1L,
Combining both cases, we find uT (10) =0, f1(10) =200.

Result: xl* = ul"(lO) =0, f1(10) =200, .s; =10- xl* =10
xj = u}(10) =0, (10) =2 x 10> =200, 55 =10- x5 =10
x} = u5(10) = 10, f3(10) =2 x 10? =200

8.5.4 TSP

A traveling salesman needs to visit 7 cities to sell his products. He must visit
each city exactly once and return to the starting city. The distance between
each pair of cities is known (if direct travel is not possible, the distance is set
to +00). How to choose the travel route to minimize the total travel distance?
Let ¢;j be the distance from city 7 to city j. Let

= {l, if the route includes traveling directly from city  to city j,
710, otherwise.
n n
min ZZC,’,’X”
i=l j=
s.t. qufl i=1,...,n,
J#i
Dxij=1, j=l...n,  xe{0,1}"
i%)
> > xij<ISI-1, VScN,2<|S|<n-1
i€S jes

8.5.5 Stochastic Shortest Path Problem



Five cities are interconnected with roads, with round-trip distances being the
same. Find the shortest path from each city to the 5-th city.
Define the optimal path from each point to the destination: f'(v;), 1 <i < 5.
If the optimal path exists, should satisfy:
fvi) =minjcjcs{cij+ f(vj)}, V1 <i <5,
where ¢;j represents the direct distance between v; and v; (cjj = 0).
Functional Space Iteration Method (Value Iteration):
First, take f1(v;) =¢j5, 1 <i<5.
Then substitute according to the following formula:
Srr1(vi) =minjcjes{cij + fi(vj)}h, Yk =1
If for some k, fr4+1(vi) = fr (vi), V1 <i <5, then
Se(vi) =minjcjcs{cij + fr(vj)}, VI<i<5
Thus, we get f(v;) = fr.(vi), V1<i<5.
8.5.6 Chain matrix multiplication in O (n3) (12Q3)
The DAG looks like pyramid, |V| = O(nz), |E| = O(n3)A
Define subproblem C (i, j) = min cost multiplying A; X Aj11 X ... X Aj.
The first branch in subtree will split the product in two pieces: A; X ... X A
and Apyp X ... X Aj, forsome i < k < j. The cost of the subtree is the
cost of these two partial products, plus the cost of combining them.

for i=1 to n: C(i,i)=0

for s to n—1:

for i=1 to n—
J +s

C(i, ) = min{C(i, k) + C(k + 1,5) +mi_y -my -m; i <k < j}
return C(1,n)

8.6 Branch-and-Bound Algorithm

(i) If one of the linear programs LP; is infeasible, i.e., P; = 0, then we also
have S; = 0 since S; C P;. Thus MILP; is infeasible and does not
need to be considered any further. We say that this problem is pruned by
infeasibility.

(ii) Let (x*, y") be an optimal solution of LP; and z; its value, i = 1, 2.

(iia) If x' is an integral vector, then (x*, y') is an optimal solution of

MILP; and a feasible solution of MILP. Problem MILP; is solved,

and we say that it is pruned by integrality. Since S; C S, it follows

that z; < z*, that is, z; is a lower bound on the value of MILP.

If x' is not an integral vector and z; is smaller than or equal to the

best known lower bound on the value of MILP, then S; cannot contain

a better solution and the problem is pruned by bound.

If x' is not an integral vector and z; is greater than the best known

lower bound, then S; may still contain an optimal solution to MILP.

Let xl! be a fractional component of vector x’. Let f” := x; s

Sip = Sin{(x,y) 1 xj < [}, Sip = Sin{(x,y) 1 xj > f'}

and repeat the above process.

8.7 The Cutting Plane Method

The idea is to find an inequality ax + by < f3 that is satisfied by every point
in S and such that ax® + byo > 3. The existence of such an inequality is
guaranteed when (xO, yo) is a basic solution of (1.6).

An inequality av < B is valid for a set K C R4 if it is satisfied by every
point v € K. A valid inequality ax + by < B for S that is violated by
(x9, y9) is a curting plane separating (x¥, y0) from S. Let ax + by < B
be a cutting plane and define Py := Py N {(x,y) : ax +by < B}.

Since S € P C Py, the linear programming relaxation of MILP based on
Py is stronger than the natural linear programming relaxation (1.5), in the sense
that the optimal value of the linear program max{cx + hy : (x,y) € Py}
is at least as good an upper-bound on the value z* as z(, while the optimal

(iib)

(iic)

solution (xO, yo) of the natural linear programming relaxation does not be-
long to Py. The recursive application of this idea leads to the cutting plane
approach.

9 Numerical Methods

9.1 Descent methods

o x (kD) = (k) 4 (k) Ax(K)

e the search direction in a
VFxFHTaxk) <o

 Exact line search: 7 = argming>( f(x + sAx)

* Backtracking line search: Begin from # = 1 and reduce ¢ by a factor
B € (0,1) until f(x+1tAx) < f(x)+ atVf(x)TAx for some
a € (0,0.5).

9.2 Steepest Descent

« Foranynorm || - || on R", define a normalized steepest descent direction
as

descent method must satisfy

Axpsq = argmin{Vf(x)Tv | ||lv]| < 1}

¢ Define unnor As

Axgg = IV () +Bxpsa

Algorithm 9.4 Steepest descent method.

given a starting point = € dom .

repeat
1. Compute steepest descent direction Az,
2. Line search. Choose t via backtracking or exact line search.
3. Update. T+ tAT.

until stopping criterion is satisfied.

9.3 Newton’s Method
Newton’s Method: xj.1 = xx — V2 f (x) "'V (xz),
9.4 Which set is convex?

« (@Aslab {x € R" | @ < alx < B} is convex because it is the
intersection of two halfspaces, both of which are convex. The intersection
of convex sets is convex.

e (b) Arectangle {x € R" | @ < x; < B, i =1,...,n} is convex
because it is a finite intersection of halfspaces. It is also a polyhedron.

e (c) A wedge {x € R" | arx < by, a;x < by} is convex because
it is the intersection of two halfspaces, which are convex. (If b = 0 and
by =0, itis a cone.)

e (d)Theset {x | [[x — xgll < |lx — yll2, Yy € S} is convex because
foreach y € S, the set {x | ||x — xqgll2 < [|x — yll2} is a halfspace,
and the intersection of halfspaces (over all y) is convex.

e (e) The set {x | dist(x,S) < dist(x,7)} is not convex in general.

For example, with S = {—1,1} and T = {0} in R, the resulting set is

{x | x < —1/20rx > 1/2}, which is not convex.

(f) The set {x | x +S» € S} (with S| convex) is convex because it can

be written as ﬂygs2 (S — ¥), an intersection of convex sets, which is

convex.

(g) Theset {x | |[x —allp < O||x — b} witha #band0 < 6 < |

is convex. If 6 = 1, it is a halfspace; if € < 1, it is a ball, both of which

are convex sets.

* (@ a@ < Ef(x) < B is convex because the constraint is linear in p:
X pif(ai).

* (b) prob(x > @) < B is convex because it is a linear constraint:
Zi:al—Za pi <B.

k=1,2,....

+ () Elx®| < aE|x| is convex because it is a linear constraint:
1 pillail® - ala;]) <.

o (d) Ex? < a is convex because it is a linear constraint: E?:l pias < a.

2
i
2

+ (e)Ex? > ais convex because it is a linear constraint: Zi:l pia; > a.

e (f) var(x) < « is not convex in p because variance var(x) =
Ex? - (Ex)z is not a convex function of p. A counterexample exists
forn =2.

* (g) var(x) > « is convex because the superlevel set of the quadratic

function Bx? — (]Ex)2 is convex (since the matrix A = aa’ is positive

semidefinite).

(h) quartile(x) > « is convex because it is equivalent to a strict linear

inequality: Zg‘:] pi < 0.25, where k = max{i|a; < a}.

(i) quartile(x) < a is convex because it is equivalent to a linear inequal-

ity: Z?:kﬂ pi = 0.25, where k is such that ax < @ < ap4 (define

k=0if @ < aj).

9.5 Which of these functions are convex?

e (a) f(x) = e* — 1 on R is strictly convex because its second deriva-
tive is positive everywhere. Therefore, it is also quasiconvex. It is also
quasiconcave but not concave.

(b) f(x1,xp) = x;x3 on R% , is neither convex nor concave because
its Hessian is neither positive nor negative semidefinite. It is quasiconcave
since its superlevel sets {(x1,x2) | x{xp > @} are convex. It is not
quasiconvex.

(©) f(xy,x) = 1/(x1x2) on R%Jr is convex because its Hessian is
positive semidefinite. Therefore, it is also quasiconvex. It is not concave
or quasiconcave.

(d) f(xy,x2) =x1/xp 0on ]RL_ is neither convex nor concave because
its Hessian is indefinite. Itis q vex and q e (quasilinear),
since both sublevel and superlevel sets are halfspaces.

e) f(x1,xp) = xlz/xz on R X Ry4 is convex because its Hessian is
positive semidefinite. Therefore, it is also quasiconvex. It is not concave
or quasiconcave.

) f(x1,x2) = xf’x;"’, 0<a<lon R3_+ is concave and qua-
siconcave because its Hessian is negative semidefinite. It is not convex or
quasiconvex.

1/p

(g)f(x):( I'.':lxip) withdom f =R}, andp <1, p #0is
concave. This includes, for example, the harmonic mean and the p-norm
with p < 1.

3.18 (a) f(X) = tr X1 is convex on dom f = Sf+ because for any
Z>0andV € 8™, g(1) = tr(Z + V)~ ! is a positive weighted sum
of convex functions 1/(1 +174;).

3.18 (b) £(X) = (detX)!/" is concave on dom f = S’ because

g(t) = (det(Z+1V)) 1/ is a geometric mean of affine functions, which
is concave.

3.19(a) f(x) = ;:1 @;X[j]isconvexif @ > -+ > ar > 0,sinceit
is a nonnegative sum of convex functions x|y, X[} +X[2], - - -» X[]] +
R X[r]-

3.19 (b) f(x) = —fozn logT(x, w)dw, where T(x, w) = x| +

XpCo8w+ -+ xpcos((n—1)w),is convex on {x | T(x, w) >

0, 0 < w < 27} because g(x, w) = —log(T(x, w)) is convex in x

for fixed w, and the integral preserves convexity.

* 3.20(a) f(x) = ||Ax — b|| is convex because it is the composition of a
convex norm and an affine function.

* 320() f(x) =—(det(Ag+x; Ay +--- +xnAp)) /™ is convex on
{x | Ag+x1A1 + -+ xnAn > 0} because h(X) = 7(detX)1/m
is convex and the argument is affine in x.

* 320 (0) f(x) = tr(Ag + x1A] + -
{x | Ag+x]A| +- - +xn Ay > 0} because tr X! is convex and the
argument is affine.

* 321 () f(x) = max;=| .k IIA® x — b || is convex because it is
the pointwise maximum of convex functions.

« 321 (b) f(x) = Z{Zl |x\[,~] is convex because it can be written as the

pointwise maximum of convex functions (sums of the r largest absolute

values).

e 322 (a) f(x) = —log(— log(zgl e
" i < 1} because it is the composition of a convex function
and affine mappings, and preserves convexity.

¢ 322 () f(x,u,v) = —Vuv-—xTx on {(x,u,v) | uv >

S+ ann)’l is convex on

T xt+b:
a; x+bj )) is convex on {x |

T
m a; x+b
it et

xTx,u, v > 0} is convex because —+/x|X; is convex on Ri+ and
decreasing in each argument, and uv — xT x is concave.
* 322 (o) f(x,u,v) = —log(uv — xTx) on {(x,u,v) | uv >
T

x" x,u,v > 0} is convex because — log is convex and decreasing, and
uv — xT x is concave.

¢ 322(d) f(x.1) = =(tP — [|x|5)/P for p > Tand {(x,1) | £ 2
[lx|lp } is convex because it is the composition of a convex and decreasing
function and concave functions.

32200 f(x,1) = —log(tP — ||x[|) for p > Land {(x,2) | £ >
x|l p } is convex because it is the composition of a convex and decreasing
function and a concave function.
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